July 9, 2016
Consider the problem of estimating parameters $X^n \in \mathbb{R}^n $, generated by a stationary process, from $m$ response variables $Y^m = AX^n+Z^m$, under the assumption that the distribution of $X^n$ is known. This is the most general version of the Bayesian linear regression problem. The lack of computationally feasible algorithms that can employ generic prior distributions and provide a good estimate of $X^n$ has limited the set of distributions researchers use to model...
February 24, 2010
In this paper, we study inference for high-dimensional data characterized by small sample sizes relative to the dimension of the data. In particular, we provide an infinite-dimensional framework to study statistical models that involve situations in which (i) the number of parameters increase with the sample size (that is, allowed to be random) and (ii) there is a possibility of missing data. Under a variety of tail conditions on the components of the data, we provide precise...
August 5, 2015
Markov chain Monte Carlo (MCMC) lies at the core of modern Bayesian methodology, much of which would be impossible without it. Thus, the convergence properties of MCMCs have received significant attention, and in particular, proving (geometric) ergodicity is of critical interest. Trust in the ability of MCMCs to sample from modern-day high-dimensional posteriors, however, has been limited by a widespread perception that these chains typically experience serious convergence pr...
March 30, 2020
We study general singular value shrinkage estimators in high-dimensional regression and classification, when the number of features and the sample size both grow proportionally to infinity. We allow models with general covariance matrices that include a large class of data generating distributions. As far as the implications of our results are concerned, we find exact asymptotic formulas for both the training and test errors in regression models fitted by gradient descent, wh...
February 6, 2014
We analyse the matrix factorization problem. Given a noisy measurement of a product of two matrices, the problem is to estimate back the original matrices. It arises in many applications such as dictionary learning, blind matrix calibration, sparse principal component analysis, blind source separation, low rank matrix completion, robust principal component analysis or factor analysis. It is also important in machine learning: unsupervised representation learning can often be ...
November 8, 2019
Deep generative priors offer powerful models for complex-structured data, such as images, audio, and text. Using these priors in inverse problems typically requires estimating the input and/or hidden signals in a multi-layer deep neural network from observation of its output. While these approaches have been successful in practice, rigorous performance analysis is complicated by the non-convex nature of the underlying optimization problems. This paper presents a novel algorit...
October 10, 2017
We perform an average case analysis of the generalization dynamics of large neural networks trained using gradient descent. We study the practically-relevant "high-dimensional" regime where the number of free parameters in the network is on the order of or even larger than the number of examples in the dataset. Using random matrix theory and exact solutions in linear models, we derive the generalization error and training error dynamics of learning and analyze how they depend...
May 20, 2014
This tutorial provides an exposition of a flexible geometric framework for high dimensional estimation problems with constraints. The tutorial develops geometric intuition about high dimensional sets, justifies it with some results of asymptotic convex geometry, and demonstrates connections between geometric results and estimation problems. The theory is illustrated with applications to sparse recovery, matrix completion, quantization, linear and logistic regression and gener...
May 6, 2022
Inference from limited data requires a notion of measure on parameter space, most explicit in the Bayesian framework as a prior. Here we demonstrate that Jeffreys prior, the best-known uninformative choice, introduces enormous bias when applied to typical scientific models. Such models have a relevant effective dimensionality much smaller than the number of microscopic parameters. Because Jeffreys prior treats all microscopic parameters equally, it is from uniform when projec...
June 17, 2009
The replica method is a non-rigorous but well-known technique from statistical physics used in the asymptotic analysis of large, random, nonlinear problems. This paper applies the replica method, under the assumption of replica symmetry, to study estimators that are maximum a posteriori (MAP) under a postulated prior distribution. It is shown that with random linear measurements and Gaussian noise, the replica-symmetric prediction of the asymptotic behavior of the postulated ...