ID: 1602.03473

New results on sum-products in R

February 10, 2016

View on ArXiv
Sergei Konyagin, Ilya D. Shkredov
Mathematics
Combinatorics
Number Theory

We improve a previous sum--products estimates in R, namely, we obtain that max{|A+A|,|AA|} \gg |A|^{4/3+c}, where c any number less than 5/9813. New lower bounds for sums of sets with small the product set are found. Also we prove some pure energy sum--products results, improving a result of Balog and Wooley, in particular.

Similar papers 1

On sum sets of sets, having small product set

March 19, 2015

95% Match
Sergei Konyagin, Ilya D. Shkredov
Combinatorics
Number Theory

We improve a result of Solymosi on sum-products in R, namely, we prove that max{|A+A|,|AA|}\gg |A|^{4/3+c}, where c>0 is an absolute constant. New lower bounds for sums of sets with small product set are found. Previous results are improved effectively for sets A from R with |AA| \le |A|^{4/3}.

Find SimilarView on arXiv

An update on the sum-product problem

May 22, 2020

91% Match
Misha Rudnev, Sophie Stevens
Number Theory
Combinatorics

We improve the best known sum-product estimates over the reals. We prove that \[ \max(|A+A|,|AA|)\geq |A|^{\frac{4}{3} + \frac{2}{1167} - o(1)}\,, \] for a finite $A\subset \mathbb R$, following a streamlining of the arguments of Solymosi, Konyagin and Shkredov. We include several new observations to our techniques. Furthermore, \[ |AA+AA|\geq |A|^{\frac{127}{80} - o(1)}\,. \] Besides, for a convex set $A$ we show that \[ |A+A|\geq |A|^{\frac{30}{19}-o(1)}\,. \] This paper ...

Find SimilarView on arXiv

On higher energy decompositions and the sum-product phenomenon

March 13, 2018

90% Match
George Shakan
Number Theory
Combinatorics

Let $A \subset \mathbb{R}$ be finite. We quantitatively improve the Balog-Wooley decomposition, that is $A$ can be partitioned into sets $B$ and $C$ such that $$\max\{E^+(B) , E^{\times}(C)\} \lesssim |A|^{3 - 7/26}, \ \ \max \{E^+(B,A) , E^{\times}(C, A) \}\lesssim |A|^{3 - 1/4}.$$ We use similar decompositions to improve upon various sum-product estimates. For instance, we show $$ |A+A| + |A A| \gtrsim |A|^{4/3 + 5/5277}.$$

Find SimilarView on arXiv

Variations on the Sum-Product Problem

December 22, 2013

90% Match
Brendan Murphy, Oliver Roche-Newton, Ilya D. Shkredov
Combinatorics

This paper considers various formulations of the sum-product problem. It is shown that, for a finite set $A\subset{\mathbb{R}}$, $$|A(A+A)|\gg{|A|^{\frac{3}{2}+\frac{1}{178}}},$$ giving a partial answer to a conjecture of Balog. In a similar spirit, it is established that $$|A(A+A+A+A)|\gg{\frac{|A|^2}{\log{|A|}}},$$ a bound which is optimal up to constant and logarithmic factors. We also prove several new results concerning sum-product estimates and expanders, for example, s...

Find SimilarView on arXiv

Variations on the sum-product problem II

March 28, 2017

89% Match
Brendan Murphy, Oliver Roche-Newton, Ilya Shkredov
Combinatorics
Number Theory

This is a sequel to the paper arXiv:1312.6438 by the same authors. In this sequel, we quantitatively improve several of the main results of arXiv:1312.6438, and build on the methods therein. The main new results is that, for any finite set $A \subset \mathbb R$, there exists $a \in A$ such that $|A(A+a)| \gtrsim |A|^{\frac{3}{2}+\frac{1}{186}}$. We give improved bounds for the cardinalities of $A(A+A)$ and $A(A-A)$. Also, we prove that $|\{(a_1+a_2+a_3+a_4)^2+\log a_5 : a_i...

Find SimilarView on arXiv

An upper bound on the multiplicative energy

June 5, 2008

89% Match
Jozsef Solymosi
Combinatorics

We prove that the sumset or the productset of any finite set of real numbers, $A,$ is at least $|A|^{4/3-\epsilon},$ improving earlier bounds. Our main tool is a new upper bound on the multiplicative energy, $E(A,A).$

Find SimilarView on arXiv

On the size of the set $AA+A$

January 31, 2018

88% Match
Oliver Roche-Newton, Imre Z. Ruzsa, ... , Shkredov Ilya D.
Combinatorics

It is established that there exists an absolute constant $c>0$ such that for any finite set $A$ of positive real numbers $$|AA+A| \gg |A|^{\frac{3}{2}+c}.$$ On the other hand, we give an explicit construction of a finite set $A \subset \mathbb R$ such that $|AA+A|=o(|A|^2)$, disproving a conjecture of Balog.

Find SimilarView on arXiv

On the few products, many sums problem

December 1, 2017

88% Match
Brendan Murphy, Misha Rudnev, ... , Shteinikov Yurii N.
Combinatorics

We prove new results on additive properties of finite sets $A$ with small multiplicative doubling $|AA|\leq M|A|$ in the category of real/complex sets as well as multiplicative subgroups in the prime residue field. The improvements are based on new combinatorial lemmata, which may be of independent interest. Our main results are the inequality $$ |A-A|^3|AA|^5 \gtrsim |A|^{10}, $$ over the reals, "redistributing" the exponents in the textbook Elekes sum-product inequality a...

Find SimilarView on arXiv

A new sum-product estimate in prime fields

July 29, 2018

88% Match
Changhao Chen, Bryce Kerr, Ali Mohammadi
Combinatorics
Number Theory

In this paper we obtain a new sum-product estimate in prime fields. In particular, we show that if $A\subseteq \mathbb{F}_p$ satisfies $|A|\le p^{64/117}$ then $$ \max\{|A\pm A|, |AA|\} \gtrsim |A|^{39/32}. $$ Our argument builds on and improves some recent results of Shakan and Shkredov which use the eigenvalue method to reduce to estimating a fourth moment energy and the additive energy $E^+(P)$ of some subset $P\subseteq A+A$. Our main novelty comes from reducing the estim...

Find SimilarView on arXiv

A bound on the multiplicative energy of a sum set and extremal sum-product problems

October 5, 2014

88% Match
Oliver Roche-Newton, Dmitry Zhelezov
Combinatorics
Number Theory

In recent years some near-optimal estimates have been established for certain sum-product type estimates. This paper gives some first extremal results which provide information about when these bounds may or may not be tight. The main tool is a new result which provides a nontrivial upper bound on the multiplicative energy of a sum set or difference set.

Find SimilarView on arXiv