ID: 1606.02320

On additive bases of sets with small product set

June 7, 2016

View on ArXiv
Ilya D. Shkredov, Dmitrii Zhelezov
Mathematics
Number Theory

We prove that finite sets of real numbers satisfying $|AA| \leq |A|^{1+\epsilon}$ with sufficiently small $\epsilon > 0$ cannot have small additive bases nor can they be written as a set of sums $B+C$ with $|B|, |C| \geq 2$. The result can be seen as a real analog of the conjecture of S\'ark\"ozy that multiplicative subgroups of finite fields of prime order are additively irreducible.

Similar papers 1

A note on the multiplicative structure of an additively shifted product set, AA+1

May 22, 2012

89% Match
Steven Senger
Combinatorics
Number Theory

We consider the multiplicative structure of sets of the form AA+1, where where A is a large, finite set of real numbers. In particular, we show that the additively shifted product set, AA+1 must have a large part outside of any generalized geometric progression of comparable length. We prove an analogous result in finite fields as well.

Find SimilarView on arXiv

On the few products, many sums problem

December 1, 2017

89% Match
Brendan Murphy, Misha Rudnev, ... , Shteinikov Yurii N.
Combinatorics

We prove new results on additive properties of finite sets $A$ with small multiplicative doubling $|AA|\leq M|A|$ in the category of real/complex sets as well as multiplicative subgroups in the prime residue field. The improvements are based on new combinatorial lemmata, which may be of independent interest. Our main results are the inequality $$ |A-A|^3|AA|^5 \gtrsim |A|^{10}, $$ over the reals, "redistributing" the exponents in the textbook Elekes sum-product inequality a...

Find SimilarView on arXiv

Additive properties of product sets in fields of prime order

February 24, 2007

88% Match
A. A. Glibichuk, S. V. Konyagin
Number Theory

Let $F_p$ be the field of a prime order $p$. Then for any positive integer $n>1$, for any $\epsilon>0$, and for any subset $A$ of $F_p$, every element of $F_p$ can be represented as a sum of $N$ elements, each of them is a product of $n$ elements from $A$, where $N$ depends on $n$ and $\espilon$.

Find SimilarView on arXiv

On the size of the set $AA+A$

January 31, 2018

88% Match
Oliver Roche-Newton, Imre Z. Ruzsa, ... , Shkredov Ilya D.
Combinatorics

It is established that there exists an absolute constant $c>0$ such that for any finite set $A$ of positive real numbers $$|AA+A| \gg |A|^{\frac{3}{2}+c}.$$ On the other hand, we give an explicit construction of a finite set $A \subset \mathbb R$ such that $|AA+A|=o(|A|^2)$, disproving a conjecture of Balog.

Find SimilarView on arXiv

On sum sets of sets, having small product set

March 19, 2015

88% Match
Sergei Konyagin, Ilya D. Shkredov
Combinatorics
Number Theory

We improve a result of Solymosi on sum-products in R, namely, we prove that max{|A+A|,|AA|}\gg |A|^{4/3+c}, where c>0 is an absolute constant. New lower bounds for sums of sets with small product set are found. Previous results are improved effectively for sets A from R with |AA| \le |A|^{4/3}.

Find SimilarView on arXiv

An update on the sum-product problem

May 22, 2020

87% Match
Misha Rudnev, Sophie Stevens
Number Theory
Combinatorics

We improve the best known sum-product estimates over the reals. We prove that \[ \max(|A+A|,|AA|)\geq |A|^{\frac{4}{3} + \frac{2}{1167} - o(1)}\,, \] for a finite $A\subset \mathbb R$, following a streamlining of the arguments of Solymosi, Konyagin and Shkredov. We include several new observations to our techniques. Furthermore, \[ |AA+AA|\geq |A|^{\frac{127}{80} - o(1)}\,. \] Besides, for a convex set $A$ we show that \[ |A+A|\geq |A|^{\frac{30}{19}-o(1)}\,. \] This paper ...

Find SimilarView on arXiv

The sum-product estimate for large subsets of prime fields

June 5, 2007

87% Match
M. Z. Garaev
Number Theory
Combinatorics

Let $\mathbb{F}_p$ be the field of a prime order $p.$ It is known that for any integer $N\in [1,p]$ one can construct a subset $A\subset\mathbb{F}_p$ with $|A|= N$ such that $$ \max\{|A+A|, |AA|\}\ll p^{1/2}|A|^{1/2}. $$ In the present paper we prove that if $A\subset \mathbb{F}_p$ with $|A|>p^{2/3},$ then $$ \max\{|A+A|, |AA|\}\gg p^{1/2}|A|^{1/2}. $$

Find SimilarView on arXiv

Sums and Products of Distinct Sets and Distinct Elements in $\mathbb{C}$

February 20, 2009

87% Match
Karsten Chipeniuk
Combinatorics
Number Theory

Let $A$ and $B$ be finite subsets of $\mathbb{C}$ such that $|B|=C|A|$. We show the following variant of the sum product phenomenon: If $|AB|<\alpha|A|$ and $\alpha \ll \log |A|$, then $|kA+lB|\gg |A|^k|B|^l$. This is an application of a result of Evertse, Schlickewei, and Schmidt on linear equations with variables taking values in multiplicative groups of finite rank, in combination with an earlier theorem of Ruzsa about sumsets in $\mathbb{R}^d$. As an application of the ca...

Find SimilarView on arXiv

Additive decompositions of large multiplicative subgroups in finite fields

April 26, 2023

87% Match
Chi Hoi Yip
Number Theory

We show that a large multiplicative subgroup of a finite field $\mathbb{F}_q$ cannot be decomposed into $A+A$ or $A+B+C$ nontrivially. We also find new families of multiplicative subgroups that cannot be decomposed as the sum of two sets nontrivially. In particular, our results extensively generalize the results of S\'{a}rk\"{o}zy and Shkredov on the additive decomposition of the set of quadratic residues modulo a prime.

Find SimilarView on arXiv

A sum-product estimate in fields of prime order

April 16, 2003

87% Match
S. V. Konyagin
Number Theory

Let q be a prime, A be a subset of a finite field $F=\Bbb Z/q\Bbb Z$, $|A|<\sqrt{|F|}$. We prove the estimate $\max(|A+A|,|A\cdot A|)\ge c|A|^{1+\epsilon}$ for some $\epsilon>0$ and c>0. This extends the result of J. Bourgain, N. Katz, and T. Tao.

Find SimilarView on arXiv