June 24, 2016
Similar papers 3
January 31, 2018
Financial markets are exposed to systemic risk, the risk that a substantial fraction of the system ceases to function and collapses. Systemic risk can propagate through different mechanisms and channels of contagion. One important form of financial contagion arises from indirect interconnections between financial institutions mediated by financial markets. This indirect interconnection occurs when financial institutions invest in common assets and is referred to as overlappin...
December 31, 2020
In the past two decades, the field of applied finance has tremendously benefited from graph theory. As a result, novel methods ranging from asset network estimation to hierarchical asset selection and portfolio allocation are now part of practitioners' toolboxes. In this paper, we investigate the fundamental problem of learning undirected graphical models under Laplacian structural constraints from the point of view of financial market times series data. In particular, we pre...
October 20, 2018
The main contribution of the paper is to employ the financial market network as a useful tool to improve the portfolio selection process, where nodes indicate securities and edges capture the dependence structure of the system. Three different methods are proposed in order to extract the dependence structure between assets in a network context. Starting from this modified structure, we formulate and then we solve the asset allocation problem. We find that the portfolios obtai...
October 26, 2017
Information is a valuable asset for agents in socio-economic systems, a significant part of the information being entailed into the very network of connections between agents. The different interlinkages patterns that agents establish may, in fact, lead to asymmetries in the knowledge of the network structure; since this entails a different ability of quantifying relevant systemic properties (e.g. the risk of financial contagion in a network of liabilities), agents capable of...
January 13, 2020
We develop a network reconstruction model based on entropy maximization considering the sparsity of networks. We reconstruct the interbank network in Japan from financial data in individual banks' balance sheets using the developed reconstruction model from 2000 to 2016. The observed sparsity of the interbank network is successfully reproduced. We examine the characteristics of the reconstructed interbank network by calculating important network attributes. We obtain the foll...
November 17, 2019
As impressively shown by the financial crisis in 2007/08, contagion effects in financial networks harbor a great threat for the stability of the entire system. Without sufficient capital requirements for banks and other financial institutions, shocks that are locally confined at first can spread through the entire system and be significantly amplified by various contagion channels. The aim of this thesis is thus to investigate in detail two selected contagion channels of this...
June 14, 2018
--- the companies populating a Stock market, along with their connections, can be effectively modeled through a directed network, where the nodes represent the companies, and the links indicate the ownership. This paper deals with this theme and discusses the concentration of a market. A cross-shareholding matrix is considered, along with two key factors: the node out-degree distribution which represents the diversification of investments in terms of the number of involved co...
June 21, 2019
In the past years statistical physics has been successfully applied for complex networks modelling. In particular, it has been shown that the maximum entropy principle can be exploited in order to construct graph ensembles for real-world networks which maximize the randomness of the graph structure keeping fixed some topological constraint. Such ensembles can be used as null models to detect statistically significant structural patterns and to reconstruct the network structur...
April 20, 2020
In this brief review, we critically examine the recent work done on correlation-based networks in financial systems. The structure of empirical correlation matrices constructed from the financial market data changes as the individual stock prices fluctuate with time, showing interesting evolutionary patterns, especially during critical events such as market crashes, bubbles, etc. We show that the study of correlation-based networks and their evolution with time is useful for ...
March 5, 2017
We discuss the systemic risk implied by the interbank exposures reconstructed with the maximum entropy method. The maximum entropy method severely underestimates the risk of interbank contagion by assuming a fully connected network, while in reality the structure of the interbank network is sparsely connected. Here, we formulate an algorithm for sparse network reconstruction, and we show numerically that it provides a more reliable estimation of the systemic risk.