June 24, 2016
Reconstructing patterns of interconnections from partial information is one of the most important issues in the statistical physics of complex networks. A paramount example is provided by financial networks. In fact, the spreading and amplification of financial distress in capital markets is strongly affected by the interconnections among financial institutions. Yet, while the aggregate balance sheets of institutions are publicly disclosed, information on single positions is mostly confidential and, as such, unavailable. Standard approaches to reconstruct the network of financial interconnection produce unrealistically dense topologies, leading to a biased estimation of systemic risk. Moreover, reconstruction techniques are generally designed for monopartite networks of bilateral exposures between financial institutions, thus failing in reproducing bipartite networks of security holdings (\eg, investment portfolios). Here we propose a reconstruction method based on constrained entropy maximization, tailored for bipartite financial networks. Such a procedure enhances the traditional {\em capital-asset pricing model} (CAPM) and allows to reproduce the correct topology of the network. We test this ECAPM method on a dataset, collected by the European Central Bank, of detailed security holdings of European institutional sectors over a period of six years (2009-2015). Our approach outperforms the traditional CAPM and the recently proposed MECAPM both in reproducing the network topology and in estimating systemic risk due to fire-sales spillovers. In general, ECAPM can be applied to the whole class of weighted bipartite networks described by the fitness model.
Similar papers 1
November 24, 2018
Due to the interconnectedness of financial entities, estimating certain key properties of a complex financial system (e.g. the implied level of systemic risk) requires detailed information about the structure of the underlying network. However, since data about financial linkages are typically subject to confidentiality, network reconstruction techniques become necessary to infer both the presence of connections and their intensity. Recently, several "horse races" have been c...
September 2, 2015
Assessing systemic risk in financial markets is of great importance but it often requires data that are unavailable or available at a very low frequency. For this reason, systemic risk assessment with partial information is potentially very useful for regulators and other stakeholders. In this paper we consider systemic risk due to fire sales spillover and portfolio rebalancing by using the risk metrics defined by Greenwood et al. (2015). By using the Maximum Entropy principl...
October 27, 2017
Bipartite networks provide an insightful representation of many systems, ranging from mutualistic networks of species interactions to investment networks in finance. The analysis of their topological structures has revealed the ubiquitous presence of properties which seem to characterize many - apparently different - systems. Nestedness, for example, has been observed in plants-pollinator as well as in country-product trade networks. This has raised questions about the signif...
In this article the problem of reconstructing the pattern of connection between agents from partial empirical data in a macro-economic model is addressed, given a set of behavioral equations. This systemic point of view puts the focus on distributional and network effects, rather than time-dependence. Using the theory of complex networks we compare several models to reconstruct both the topology and the flows of money of the different types of monetary transactions, while imp...
When studying social, economic and biological systems, one has often access to only limited information about the structure of the underlying networks. An example of paramount importance is provided by financial systems: information on the interconnections between financial institutions is privacy-protected, dramatically reducing the possibility of correctly estimating crucial systemic properties such as the resilience to the propagation of shocks. The need to compensate for ...
Network topology plays a key role in many phenomena, from the spreading of diseases to that of financial crises. Whenever the whole structure of a network is unknown, one must resort to reconstruction methods that identify the least biased ensemble of networks consistent with the partial information available. A challenging case, frequently encountered due to privacy issues in the analysis of interbank flows and Big Data, is when there is only local (node-specific) aggregate ...
We address a fundamental problem that is systematically encountered when modeling complex systems: the limitedness of the information available. In the case of economic and financial networks, privacy issues severely limit the information that can be accessed and, as a consequence, the possibility of correctly estimating the resilience of these systems to events such as financial shocks, crises and cascade failures. Here we present an innovative method to reconstruct the stru...
October 31, 2012
Financial markets are a typical example of complex systems where interactions between constituents lead to many remarkable features. Here, we show that a pairwise maximum entropy model (or auto-logistic model) is able to describe switches between ordered (strongly correlated) and disordered market states. In this framework, the influence matrix may be thought as a dissimilarity measure and we explain how it can be used to study market structure. We make the link with the grap...
March 9, 2021
The field of Financial Networks is a paramount example of the novel applications of Statistical Physics that have made possible by the present data revolution. As the total value of the global financial market has vastly outgrown the value of the real economy, financial institutions on this planet have created a web of interactions whose size and topology calls for a quantitative analysis by means of Complex Networks. Financial Networks are not only a playground for the use o...
A fundamental problem in studying and modeling economic and financial systems is represented by privacy issues, which put severe limitations on the amount of accessible information. Here we introduce a novel, highly nontrivial method to reconstruct the structural properties of complex weighted networks of this kind using only partial information: the total number of nodes and links, and the values of the strength for all nodes. The latter are used as fitness to estimate the u...