June 5, 2020
The problem of community detection with two equal-sized communities is closely related to the minimum graph bisection problem over certain random graph models. In the stochastic block model distribution over networks with community structure, a well-known semidefinite programming (SDP) relaxation of the minimum bisection problem recovers the underlying communities whenever possible. Motivated by their superior scalability, we study the theoretical performance of linear progra...
November 8, 2022
Community detection in the stochastic block model is one of the central problems of graph clustering. Since its introduction, many subsequent papers have made great strides in solving and understanding this model. In this setup, spectral algorithms have been one of the most widely used frameworks. However, despite the long history of study, there are still unsolved challenges. One of the main open problems is the design and analysis of "simple"(vanilla) spectral algorithms, e...
June 22, 2015
We consider a bipartite stochastic block model on vertex sets $V_1$ and $V_2$, with planted partitions in each, and ask at what densities efficient algorithms can recover the partition of the smaller vertex set. When $|V_2| \gg |V_1|$, multiple thresholds emerge. We first locate a sharp threshold for detection of the partition, in the sense of the results of \cite{mossel2012stochastic,mossel2013proof} and \cite{massoulie2014community} for the stochastic block model. We then...
November 11, 2022
A fundamental problem in mathematics and network analysis is to find conditions under which a graph can be partitioned into smaller pieces. The most important tool for this partitioning is the Fiedler vector or discrete Cheeger inequality. These results relate the graph spectrum (eigenvalues of the normalized adjacency matrix) to the ability to break a graph into two pieces, with few edge deletions. An entire subfield of mathematics, called spectral graph theory, has emerged ...
September 14, 2022
The spectral and localization properties of heterogeneous random graphs are determined by the resolvent distributional equations, which have so far resisted an analytic treatment. We solve analytically the resolvent equations of random graphs with an arbitrary degree distribution in the high-connectivity limit, from which we perform a thorough analysis of the impact of degree fluctuations on the spectral density, the inverse participation ratio, and the distribution of the lo...
September 30, 2013
Using methods from random matrix theory researchers have recently calculated the full spectra of random networks with arbitrary degrees and with community structure. Both reveal interesting spectral features, including deviations from the Wigner semicircle distribution and phase transitions in the spectra of community structured networks. In this paper we generalize both calculations, giving a prescription for calculating the spectrum of a network with both community structur...
October 19, 2009
The spectral density of random graphs with topological constraints is analysed using the replica method. We consider graph ensembles featuring generalised degree-degree correlations, as well as those with a community structure. In each case an exact solution is found for the spectral density in the form of consistency equations depending on the statistical properties of the graph ensemble in question. We highlight the effect of these topological constraints on the resulting s...
March 15, 2018
We study bipartite community detection in networks, or more generally the network biclustering problem. We present a fast two-stage procedure based on spectral initialization followed by the application of a pseudo-likelihood classifier twice. Under mild regularity conditions, we establish the weak consistency of the procedure (i.e., the convergence of the misclassification rate to zero) under a general bipartite stochastic block model. We show that the procedure is optimal i...
February 12, 2019
The maximization of generalized modularity performs well on networks in which the members of all communities are statistically indistinguishable from each other. However, there is no theory bounding the maximization performance in more realistic networks where edges are heterogeneously distributed within and between communities. Using the random graph properties, we establish asymptotic theoretical bounds on the resolution parameter for which the generalized modularity maximi...
February 22, 2021
Random graph models are used to describe the complex structure of real-world networks in diverse fields of knowledge. Studying their behavior and fitting properties are still critical challenges, that in general, require model specific techniques. An important line of research is to develop generic methods able to fit and select the best model among a collection. Approaches based on spectral density (i.e., distribution of the graph adjacency matrix eigenvalues) are appealing ...