January 20, 2017
Similar papers 2
June 24, 2015
Statistical node clustering in discrete time dynamic networks is an emerging field that raises many challenges. Here, we explore statistical properties and frequentist inference in a model that combines a stochastic block model (SBM) for its static part with independent Markov chains for the evolution of the nodes groups through time. We model binary data as well as weighted dynamic random graphs (with discrete or continuous edges values). Our approach, motivated by the impor...
December 7, 2018
We consider the problem of estimating the location of a single change point in a dynamic stochastic block model. We propose two methods of estimating the change point, together with the model parameters. The first employs a least squares criterion function and takes into consideration the full structure of the stochastic block model and is evaluated at each point in time. Hence, as an intermediate step, it requires estimating the community structure based on a clustering algo...
June 3, 2020
This article considers the problem of community detection in sparse dynamical graphs in which the community structure evolves over time. A fast spectral algorithm based on an extension of the Bethe-Hessian matrix is proposed, which benefits from the positive correlation in the class labels and in their temporal evolution and is designed to be applicable to any dynamical graph with a community structure. Under the dynamical degree-corrected stochastic block model, in the case ...
April 26, 2019
We discuss a variant of `blind' community detection, in which we aim to partition an unobserved network from the observation of a (dynamical) graph signal defined on the network. We consider a scenario where our observed graph signals are obtained by filtering white noise input, and the underlying network is different for every observation. In this fashion, the filtered graph signals can be interpreted as defined on a time-varying network. We model each of the underlying netw...
April 22, 2013
Significant efforts have gone into the development of statistical models for analyzing data in the form of networks, such as social networks. Most existing work has focused on modeling static networks, which represent either a single time snapshot or an aggregate view over time. There has been recent interest in statistical modeling of dynamic networks, which are observed at multiple points in time and offer a richer representation of many complex phenomena. In this paper, we...
May 8, 2016
Detecting community structures in social networks has gained considerable attention in recent years. However, lack of prior knowledge about the number of communities, and their overlapping nature have made community detection a challenging problem. Moreover, many of the existing methods only consider static networks, while most of real world networks are dynamic and evolve over time. Hence, finding consistent overlapping communities in dynamic networks without any prior knowl...
September 14, 2011
In this paper we extend our previous work on the stochastic block model, a commonly used generative model for social and biological networks, and the problem of inferring functional groups or communities from the topology of the network. We use the cavity method of statistical physics to obtain an asymptotically exact analysis of the phase diagram. We describe in detail properties of the detectability/undetectability phase transition and the easy/hard phase transition for the...
November 13, 2017
We present a selective review of statistical modeling of dynamic networks. We focus on models with latent variables, specifically, the latent space models and the latent class models (or stochastic blockmodels), which investigate both the observed features and the unobserved structure of networks. We begin with an overview of the static models, and then we introduce the dynamic extensions. For each dynamic model, we also discuss its applications that have been studied in the ...
April 9, 2020
We introduce the Markov Stochastic Block Model (MSBM): a growth model for community based networks where node attributes are assigned through a Markovian dynamic. We rely on HMMs' literature to design prediction methods that are robust to local clustering errors. We focus specifically on the link prediction and collaborative filtering problems and we introduce a new model selection procedure to infer the number of hidden clusters in the network. Our approaches for reliable pr...
February 16, 2018
We analyze the information-theoretic limits for the recovery of node labels in several network models. This includes the Stochastic Block Model, the Exponential Random Graph Model, the Latent Space Model, the Directed Preferential Attachment Model, and the Directed Small-world Model. For the Stochastic Block Model, the non-recoverability condition depends on the probabilities of having edges inside a community, and between different communities. For the Latent Space Model, th...