January 20, 2017
We study the inference of a model of dynamic networks in which both communities and links keep memory of previous network states. By considering maximum likelihood inference from single snapshot observations of the network, we show that link persistence makes the inference of communities harder, decreasing the detectability threshold, while community persistence tends to make it easier. We analytically show that communities inferred from single network snapshot can share a maximum overlap with the underlying communities of a specific previous instant in time. This leads to time-lagged inference: the identification of past communities rather than present ones. Finally we compute the time lag and propose a corrected algorithm, the Lagged Snapshot Dynamic (LSD) algorithm, for community detection in dynamic networks. We analytically and numerically characterize the detectability transitions of such algorithm as a function of the memory parameters of the model and we make a comparison with a full dynamic inference.
Similar papers 1
June 20, 2015
We study the fundamental limits on learning latent community structure in dynamic networks. Specifically, we study dynamic stochastic block models where nodes change their community membership over time, but where edges are generated independently at each time step. In this setting (which is a special case of several existing models), we are able to derive the detectability threshold exactly, as a function of the rate of change and the strength of the communities. Below this ...
Although the computational and statistical trade-off for modeling single graphs, for instance, using block models is relatively well understood, extending such results to sequences of graphs has proven to be difficult. In this work, we take a step in this direction by proposing two models for graph sequences that capture: (a) link persistence between nodes across time, and (b) community persistence of each node across time. In the first model, we assume that the latent commun...
Temporal Networks, and more specifically, Markovian Temporal Networks, present a unique challenge regarding the community discovery task. The inherent dynamism of these systems requires an intricate understanding of memory effects and structural heterogeneity, which are often key drivers of network evolution. In this study, we address these aspects by introducing an innovative approach to community detection, centered around a novel modularity function. We focus on demonstrat...
February 5, 2017
Latent stochastic block models are flexible statistical models that are widely used in social network analysis. In recent years, efforts have been made to extend these models to temporal dynamic networks, whereby the connections between nodes are observed at a number of different times. In this paper we extend the original stochastic block model by using a Markovian property to describe the evolution of nodes' cluster memberships over time. We recast the problem of clustering...
November 4, 2019
Networks are useful representations of many systems with interacting entities, such as social, biological and physical systems. Characterizing the meso-scale organization, i.e. the community structure, is an important problem in network science. Community detection aims to partition the network into sets of nodes that are densely connected internally but sparsely connected to other dense sets of nodes. Current work on community detection mostly focuses on static networks. How...
November 19, 2014
There has been great interest in recent years on statistical models for dynamic networks. In this paper, I propose a stochastic block transition model (SBTM) for dynamic networks that is inspired by the well-known stochastic block model (SBM) for static networks and previous dynamic extensions of the SBM. Unlike most existing dynamic network models, it does not make a hidden Markov assumption on the edge-level dynamics, allowing the presence or absence of edges to directly in...
October 10, 2017
The latent stochastic block model is a flexible and widely used statistical model for the analysis of network data. Extensions of this model to a dynamic context often fail to capture the persistence of edges in contiguous network snapshots. The recently introduced stochastic block transition model addresses precisely this issue, by modelling the probabilities of creating a new edge and of maintaining an edge over time. Using a model-based clustering approach, this paper illu...
Directional and pairwise measurements are often used to model inter-relationships in a social network setting. The Mixed-Membership Stochastic Blockmodel (MMSB) was a seminal work in this area, and many of its capabilities were extended since then. In this paper, we propose the \emph{Dynamic Infinite Mixed-Membership stochastic blockModel (DIM3)}, a generalised framework that extends the existing work to a potentially infinite number of communities and mixture memberships for...
Dynamic networks, especially those representing social networks, undergo constant evolution of their community structure over time. Nodes can migrate between different communities, communities can split into multiple new communities, communities can merge together, etc. In order to represent dynamic networks with evolving communities it is essential to use a dynamic model rather than a static one. Here we use a dynamic stochastic block model where the underlying block model i...
Significant efforts have gone into the development of statistical models for analyzing data in the form of networks, such as social networks. Most existing work has focused on modeling static networks, which represent either a single time snapshot or an aggregate view over time. There has been recent interest in statistical modeling of dynamic networks, which are observed at multiple points in time and offer a richer representation of many complex phenomena. In this paper, we...