February 5, 2017
Latent stochastic block models are flexible statistical models that are widely used in social network analysis. In recent years, efforts have been made to extend these models to temporal dynamic networks, whereby the connections between nodes are observed at a number of different times. In this paper we extend the original stochastic block model by using a Markovian property to describe the evolution of nodes' cluster memberships over time. We recast the problem of clustering the nodes of the network into a model-based context, and show that the integrated completed likelihood can be evaluated analytically for a number of likelihood models. Then, we propose a scalable greedy algorithm to maximise this quantity, thereby estimating both the optimal partition and the ideal number of groups in a single inferential framework. Finally we propose applications of our methodology to both real and artificial datasets.
Similar papers 1
October 10, 2017
The latent stochastic block model is a flexible and widely used statistical model for the analysis of network data. Extensions of this model to a dynamic context often fail to capture the persistence of edges in contiguous network snapshots. The recently introduced stochastic block transition model addresses precisely this issue, by modelling the probabilities of creating a new edge and of maintaining an edge over time. Using a model-based clustering approach, this paper illu...
May 9, 2016
The stochastic block model (SBM) is a flexible probabilistic tool that can be used to model interactions between clusters of nodes in a network. However, it does not account for interactions of time varying intensity between clusters. The extension of the SBM developed in this paper addresses this shortcoming through a temporal partition: assuming interactions between nodes are recorded on fixed-length time intervals, the inference procedure associated with the model we propo...
June 12, 2015
The latent block model (LBM) is a flexible probabilistic tool to describe interactions between node sets in bipartite networks, but it does not account for interactions of time varying intensity between nodes in unknown classes. In this paper we propose a non stationary temporal extension of the LBM that clusters simultaneously the two node sets of a bipartite network and constructs classes of time intervals on which interactions are stationary. The number of clusters as well...
June 24, 2015
Statistical node clustering in discrete time dynamic networks is an emerging field that raises many challenges. Here, we explore statistical properties and frequentist inference in a model that combines a stochastic block model (SBM) for its static part with independent Markov chains for the evolution of the nodes groups through time. We model binary data as well as weighted dynamic random graphs (with discrete or continuous edges values). Our approach, motivated by the impor...
March 4, 2014
Significant efforts have gone into the development of statistical models for analyzing data in the form of networks, such as social networks. Most existing work has focused on modeling static networks, which represent either a single time snapshot or an aggregate view over time. There has been recent interest in statistical modeling of dynamic networks, which are observed at multiple points in time and offer a richer representation of many complex phenomena. In this paper, we...
November 19, 2014
There has been great interest in recent years on statistical models for dynamic networks. In this paper, I propose a stochastic block transition model (SBTM) for dynamic networks that is inspired by the well-known stochastic block model (SBM) for static networks and previous dynamic extensions of the SBM. Unlike most existing dynamic network models, it does not make a hidden Markov assumption on the edge-level dynamics, allowing the presence or absence of edges to directly in...
November 13, 2017
We present a selective review of statistical modeling of dynamic networks. We focus on models with latent variables, specifically, the latent space models and the latent class models (or stochastic blockmodels), which investigate both the observed features and the unobserved structure of networks. We begin with an overview of the static models, and then we introduce the dynamic extensions. For each dynamic model, we also discuss its applications that have been studied in the ...
April 22, 2013
Significant efforts have gone into the development of statistical models for analyzing data in the form of networks, such as social networks. Most existing work has focused on modeling static networks, which represent either a single time snapshot or an aggregate view over time. There has been recent interest in statistical modeling of dynamic networks, which are observed at multiple points in time and offer a richer representation of many complex phenomena. In this paper, we...
September 8, 2015
In this paper, we focus on the stochastic block model (SBM),a probabilistic tool describing interactions between nodes of a network using latent clusters. The SBM assumes that the networkhas a stationary structure, in which connections of time varying intensity are not taken into account. In other words, interactions between two groups are forced to have the same features during the whole observation time. To overcome this limitation,we propose a partition of the whole time h...
July 10, 2017
We develop a model in which interactions between nodes of a dynamic network are counted by non homogeneous Poisson processes. In a block modelling perspective, nodes belong to hidden clusters (whose number is unknown) and the intensity functions of the counting processes only depend on the clusters of nodes. In order to make inference tractable we move to discrete time by partitioning the entire time horizon in which interactions are observed in fixed-length time sub-interval...