June 23, 2009
Recently Sagawa and Ueda [Phys. Rev. Lett. 100, 080403 (2008)] derived a bound on the work that can be extracted from a quantum system with the use of feedback control. They left open the question of whether this bound could be achieved for every measurement that could be made by the controller. We show that it can, and that this follows straightforwardly from recent work on Maxwell's demon by Alicki et al. [Open Syst. Inform. Dynam. 11, 205 (2004)], for both discrete and con...
September 28, 2015
In his famous letter in 1870, Maxwell describes how Joule's law can be violated "only by the intelligent action of a mere guiding agent", later coined as Maxwell's demon by Lord Kelvin. In this letter we study thermodynamics of information using an experimentally feasible Maxwell's demon setup based a single electron transistor capacitively coupled to a single electron box, where both the system and the Demon can be clearly identified. Such an engineered on-chip Demon measure...
March 13, 2018
Recent advances in experimental techniques allow one to measure and control systems at the level of single molecules and atoms. Here gaining information about fluctuating thermodynamic quantities is crucial for understanding nonequilibrium thermodynamic behavior of small systems. To achieve this aim, stochastic thermodynamics offers a theoretical framework, and nonequilibrium equalities such as Jarzynski equality and fluctuation theorems provide key information about the fluc...
November 24, 2011
We review theory of information thermodynamics which incorporates effects of measurement and feedback into nonequilibrium thermodynamics of a small system, and discuss how the second law of thermodynamics should be extended for such situations. We address the issue of the maximum work that can be extracted from the system in the presence of a feedback controller (Maxwell's demon) and provide a few illustrative examples. We also review a recent experiment that realized a Maxwe...
August 17, 2014
It is demonstrated that Maxwell's demon can be used to allow a machine to extract energy from a heat bath by use of information that is processed by the demon at a remote location. The model proposed here effectively replaces transmission of energy by transmission of information. For that we use a feedback protocol that enables a net gain by stimulating emission in selected fluctuations around thermal equilibrium. We estimate the down conversion rate and the efficiency of ene...
March 15, 2023
Maxwell's demon can be utilized to construct quantum information engines. While most of the existing quantum information engines harness thermal fluctuations, quantum information engines that utilize quantum fluctuations have recently been discussed. We propose a new type of genuinely quantum information engine that harnesses quantum fluctuations to achieve cumulative storage of useful work and unidirectional transport of a particle. Our scheme does not require thermalization...
March 5, 2002
It is generally accepted, following Landauer and Bennett, that the process of measurement involves no minimum entropy cost, but the erasure of information in resetting the memory register of a computer to zero requires dissipating heat into the environment. This thesis has been challenged recently in a two-part article by Earman and Norton. I review some relevant observations in the thermodynamics of computation and argue that Earman and Norton are mistaken: there is in princ...
November 6, 2018
Maxwell demons are creatures that are imagined to be able to reduce the entropy of a system without performing any work on it. Conventionally, such a Maxwell demon's intricate action consists of measuring individual particles and subsequently performing feedback. Here we show that much simpler setups can still act as demons: we demonstrate that it is sufficient to exploit a non-equilibrium distribution to seemingly break the second law of thermodynamics. We propose both an el...
October 20, 2012
We present a physical implementation of a Maxwell demon which consists of a conventional single electron transistor (SET) capacitively coupled to another quantum dot detecting its state. Altogether, the system is described by stochastic thermodynamics. We identify the regime where the energetics of the SET is not affected by the detection, but where its coarse-grained entropy production is shown to contain a new contribution compared to the isolated SET. This additional contr...
November 8, 2012
We show that frequent nondemolition measurements of a quantum system immersed in a thermal bath allow the extraction of work in a closed cycle from the system-bath interaction (correlation) energy, a hitherto unexploited work resource. It allows for work even if no information is gathered or the bath is at zero temperature, provided the cycle is within the bath memory time. The predicted work resource may be the basis of quantum engines embedded in a bath with long memory tim...