October 6, 2016
We expand the standard thermodynamic framework of a system coupled to a thermal reservoir by considering a stream of independently prepared units repeatedly put into contact with the system. These units can be in any nonequilibrium state and interact with the system with an arbitrary strength and duration. We show that this stream constitutes an effective resource of nonequilibrium free energy and identify the conditions under which it behaves as a heat, work or information r...
January 16, 2020
A demonic being, introduced by Maxwell, to miraculously create thermal non-equilibrium and violate the Second law of thermodynamics, has been among the most intriguing and elusive wishful concepts for over 150 years. Maxwell and his followers focused on 'effortless gating' a molecule at a time, but overlooked simultaneous interference of other chaotic molecules, while the demon exorcists tried to justify impossible processes with misplaced 'compensations' by work of measureme...
April 20, 2022
Maxwell's demons work by rectifying thermal fluctuations. They are not expected to function at macroscopic scales where fluctuations become negligible and dynamics become deterministic. We propose an electronic implementation of an autonomous Maxwell's demon that indeed stops working in the regular macroscopic limit as the dynamics becomes deterministic. However, we find that if the power supplied to the demon is scaled up appropriately, the deterministic limit is avoided and...
February 18, 2017
A theory of feedback controlled heat transport in quantum systems is presented. It is based on modelling heat engines as driven multipartite systems subject to projective quantum measurements and measurement-conditioned unitary evolutions. The theory unifies various results presented in the previous literature. Feedback control breaks time reversal invariance. This in turn results in the fluctuation relation not being obeyed. Its restoration occurs by an appropriate accountin...
June 13, 2007
The information-theoretic arguments presented in a recent publication on "Quantum discord and Maxwell's demons" are discussed, and found not to address the problem specified by Maxwell. Two interrelated and definitive exorcisms of the demon, one purely thermodynamic, and the other quantum-thermodynamic are briefly discussed. For each of the two exorcisms, the demon is shown to be incapable to accomplish his assignment neither because of limitations arising from information-th...
August 22, 2005
With a class of quantum heat engines which consists of two-energy-eigenstate systems undergoing, respectively, quantum adiabatic processes and energy exchanges with heat baths at different stages of a cycle, we are able to clarify some important aspects of the second law of thermodynamics. The quantum heat engines also offer a practical way, as an alternative to Szilard's engine, to physically realise Maxwell's daemon. While respecting the second law on the average, they are ...
May 9, 2011
Following recent work by Marathe and Parrondo [PRL, 104, 245704 (2010)], we construct a classical Hamiltonian system whose energy is reduced during the adiabatic cycling of external parameters, when initial conditions are sampled microcanonically. Combining our system with a device that measures its energy, we propose a cyclic procedure during which energy is extracted from a heat bath and converted to work, in apparent violation of the second law of thermodynamics. This para...
April 6, 2023
This is a review of the theory of quantum thermodynamic demons; these are quantum systems that look like they violate the laws of thermodynamics, in analogy with Maxwell's demon. It concentrates on autonomous demons that can be made using nanoelectronics. Here ``autonomous'' means that the demon operates without any external measurement or driving, making it possible to model their entire thermodynamic behaviour using Schr\"odinger's equation. My main aim is to review why cra...
May 25, 2020
In a recent paper we have introduced a continuous version of the Maxwell demon (CMD) that is capable of extracting large amounts of work per cycle by repeated measurements of the state of the system. Here we underline its main features such as the role played by the Landauer limit in the average extracted work, the continuous character of the measurement process and the differences between our continuous Maxwell demon and an autonomous Maxwell demon. We demonstrate the revers...
January 19, 2017
According to Landauer's principle, erasure of information is the only part of a computation process that unavoidably involves energy dissipation. If done reversibly, such an erasure generates the minimal heat of $k_BT\ln 2$ per erased bit of information. The goal of this work is to discuss the actual reversal of the optimal erasure which can serve as the basis for the Maxwell's demon operating with ultimate thermodynamic efficiency as dictated by the second law of thermodynam...