March 28, 2017
Similar papers 4
November 5, 2021
The main results of this paper concern growth in sums of a $k$-convex function $f$. Firstly, we streamline the proof of a growth result for $f(A)$ where $A$ has small additive doubling, and improve the bound by removing logarithmic factors. The result yields an optimal bound for \[ |2^k f(A) - (2^k-1)f(A)|. \] We also generalise a recent result of Hanson, Roche-Newton and Senger, by proving that for any finite $A\subset \mathbb{R}$ \[ | 2^k f(sA-sA) - (2^k-1) f(sA-sA)| \g...
August 22, 2011
A set of reals $A=\{a_1,...,a_n\}$ labeled in increasing order is called convex if there exists a continuous strictly convex function $f$ such that $f(i)=a_i$ for every $i$. Given a convex set $A$, we prove \[|A+A|\gg\frac{|A|^{14/9}}{(\log|A|)^{2/9}}.\] Sumsets of different summands and an application to a sum-product-type problem are also studied either as remarks or as theorems.
August 25, 2018
Let $F$ be a field and a finite $A\subset F$ be sufficiently small in terms of the characteristic $p$ of $F$ if $p>0$. We strengthen the "threshold" sum-product inequality $$|AA|^3 |A\pm A|^2 \gg |A|^6\,,\;\;\;\;\mbox{hence} \;\; \;\;|AA|+|A+A|\gg |A|^{1+\frac{1}{5}},$$ due to Roche-Newton, Rudnev and Shkredov, to $$|AA|^5 |A\pm A|^4 \gg |A|^{11-o(1)}\,,\;\;\;\;\mbox{hence} \;\; \;\;|AA|+|A\pm A|\gg |A|^{1+\frac{2}{9}-o(1)},$$ as well as $$ |AA|^{36}|A-A|^{24} \gg |A|^{73...
January 27, 2019
Let $A\subset [1, 2]$ be a $(\delta, \sigma)$-set with measure $|A|=\delta^{1-\sigma}$ in the sense of Katz and Tao. For $\sigma\in (1/2, 1)$ we show that $$ |A+A|+|AA|\gtrapprox \delta^{-c}|A|, $$ for $c=\frac{(1-\sigma)(2\sigma-1)}{6\sigma+4}$. This improves the bound of Guth, Katz, and Zahl for large $\sigma$.
February 26, 2007
Let $\mathbb{F}_p$ be the field of residue classes modulo a prime number $p$ and let $A$ be a non-empty subset of $\mathbb{F}_p.$ In this paper we give an explicit version of the sum-product estimate of Bourgain, Katz, Tao and Bourgain, Glibichuk, Konyagin on the size of $\max\{|A+A|, |AA|\}.$ In particular, our result implies that if $1<|A|\le p^{7/13}(\log p)^{-4/13},$ then $$ \max\{|A+A|, |AA|\}\gg \frac{|A|^{15/14}}{(\log|A|)^{2/7}} . $$
June 7, 2016
We prove that finite sets of real numbers satisfying $|AA| \leq |A|^{1+\epsilon}$ with sufficiently small $\epsilon > 0$ cannot have small additive bases nor can they be written as a set of sums $B+C$ with $|B|, |C| \geq 2$. The result can be seen as a real analog of the conjecture of S\'ark\"ozy that multiplicative subgroups of finite fields of prime order are additively irreducible.
June 5, 2008
We prove that the sumset or the productset of any finite set of real numbers, $A,$ is at least $|A|^{4/3-\epsilon},$ improving earlier bounds. Our main tool is a new upper bound on the multiplicative energy, $E(A,A).$
May 22, 2012
We consider the multiplicative structure of sets of the form AA+1, where where A is a large, finite set of real numbers. In particular, we show that the additively shifted product set, AA+1 must have a large part outside of any generalized geometric progression of comparable length. We prove an analogous result in finite fields as well.
February 17, 2004
The basic theme of this paper is the fact that if $A$ is a finite set of integers, then the sum and product sets cannot both be small. A precise formulation of this fact is Conjecture 1 below due to Erd\H os-Szemer\'edi [E-S]. (see also [El], [T], and [K-T] for related aspects.) Only much weaker results or very special cases of this conjecture are presently known. One approach consists of assuming the sum set $A + A$ small and then deriving that the product set $AA$ is large ...
July 29, 2018
Let $\mathbb{F}_q$ be a finite field of order $q$, where $q$ is a power of a prime. For a set $A \subset \mathbb{F}_q$, under certain structural restrictions, we prove a new explicit lower bound on the size of the product set $A(A + 1)$. Our result improves on the previous best known bound due to Zhelezov and holds under more relaxed restrictions.