ID: 1703.09549

Variations on the sum-product problem II

March 28, 2017

View on ArXiv

Similar papers 4

Growth in Sumsets of Higher Convex Functions

November 5, 2021

87% Match
Peter J. Bradshaw
Number Theory
Combinatorics

The main results of this paper concern growth in sums of a $k$-convex function $f$. Firstly, we streamline the proof of a growth result for $f(A)$ where $A$ has small additive doubling, and improve the bound by removing logarithmic factors. The result yields an optimal bound for \[ |2^k f(A) - (2^k-1)f(A)|. \] We also generalise a recent result of Hanson, Roche-Newton and Senger, by proving that for any finite $A\subset \mathbb{R}$ \[ | 2^k f(sA-sA) - (2^k-1) f(sA-sA)| \g...

Find SimilarView on arXiv

On a theorem of Schoen and Shkredov on sumsets of convex sets

August 22, 2011

87% Match
Liangpan Li
Combinatorics

A set of reals $A=\{a_1,...,a_n\}$ labeled in increasing order is called convex if there exists a continuous strictly convex function $f$ such that $f(i)=a_i$ for every $i$. Given a convex set $A$, we prove \[|A+A|\gg\frac{|A|^{14/9}}{(\log|A|)^{2/9}}.\] Sumsets of different summands and an application to a sum-product-type problem are also studied either as remarks or as theorems.

Find SimilarView on arXiv

Stronger sum-product inequalities for small sets

August 25, 2018

87% Match
Misha Rudnev, George Shakan, Ilya Shkredov
Combinatorics
Number Theory

Let $F$ be a field and a finite $A\subset F$ be sufficiently small in terms of the characteristic $p$ of $F$ if $p>0$. We strengthen the "threshold" sum-product inequality $$|AA|^3 |A\pm A|^2 \gg |A|^6\,,\;\;\;\;\mbox{hence} \;\; \;\;|AA|+|A+A|\gg |A|^{1+\frac{1}{5}},$$ due to Roche-Newton, Rudnev and Shkredov, to $$|AA|^5 |A\pm A|^4 \gg |A|^{11-o(1)}\,,\;\;\;\;\mbox{hence} \;\; \;\;|AA|+|A\pm A|\gg |A|^{1+\frac{2}{9}-o(1)},$$ as well as $$ |AA|^{36}|A-A|^{24} \gg |A|^{73...

Find SimilarView on arXiv

Discretized sum-product for large sets

January 27, 2019

87% Match
Changhao Chen
Combinatorics
Classical Analysis and ODEs

Let $A\subset [1, 2]$ be a $(\delta, \sigma)$-set with measure $|A|=\delta^{1-\sigma}$ in the sense of Katz and Tao. For $\sigma\in (1/2, 1)$ we show that $$ |A+A|+|AA|\gtrapprox \delta^{-c}|A|, $$ for $c=\frac{(1-\sigma)(2\sigma-1)}{6\sigma+4}$. This improves the bound of Guth, Katz, and Zahl for large $\sigma$.

Find SimilarView on arXiv

An explicit sum-product estimate in $\mathbb{F}_p$

February 26, 2007

87% Match
M. Z. Garaev
Number Theory

Let $\mathbb{F}_p$ be the field of residue classes modulo a prime number $p$ and let $A$ be a non-empty subset of $\mathbb{F}_p.$ In this paper we give an explicit version of the sum-product estimate of Bourgain, Katz, Tao and Bourgain, Glibichuk, Konyagin on the size of $\max\{|A+A|, |AA|\}.$ In particular, our result implies that if $1<|A|\le p^{7/13}(\log p)^{-4/13},$ then $$ \max\{|A+A|, |AA|\}\gg \frac{|A|^{15/14}}{(\log|A|)^{2/7}} . $$

Find SimilarView on arXiv

On additive bases of sets with small product set

June 7, 2016

87% Match
Ilya D. Shkredov, Dmitrii Zhelezov
Number Theory

We prove that finite sets of real numbers satisfying $|AA| \leq |A|^{1+\epsilon}$ with sufficiently small $\epsilon > 0$ cannot have small additive bases nor can they be written as a set of sums $B+C$ with $|B|, |C| \geq 2$. The result can be seen as a real analog of the conjecture of S\'ark\"ozy that multiplicative subgroups of finite fields of prime order are additively irreducible.

Find SimilarView on arXiv

An upper bound on the multiplicative energy

June 5, 2008

87% Match
Jozsef Solymosi
Combinatorics

We prove that the sumset or the productset of any finite set of real numbers, $A,$ is at least $|A|^{4/3-\epsilon},$ improving earlier bounds. Our main tool is a new upper bound on the multiplicative energy, $E(A,A).$

Find SimilarView on arXiv

A note on the multiplicative structure of an additively shifted product set, AA+1

May 22, 2012

87% Match
Steven Senger
Combinatorics
Number Theory

We consider the multiplicative structure of sets of the form AA+1, where where A is a large, finite set of real numbers. In particular, we show that the additively shifted product set, AA+1 must have a large part outside of any generalized geometric progression of comparable length. We prove an analogous result in finite fields as well.

Find SimilarView on arXiv

The Erd\H{o}s-Szemer\'edi problem on sum set and product set

February 17, 2004

86% Match
Mei-Chu Chang
Combinatorics

The basic theme of this paper is the fact that if $A$ is a finite set of integers, then the sum and product sets cannot both be small. A precise formulation of this fact is Conjecture 1 below due to Erd\H os-Szemer\'edi [E-S]. (see also [El], [T], and [K-T] for related aspects.) Only much weaker results or very special cases of this conjecture are presently known. One approach consists of assuming the sum set $A + A$ small and then deriving that the product set $AA$ is large ...

Find SimilarView on arXiv

On growth of the set $A(A+1)$ in arbitrary finite fields

July 29, 2018

86% Match
Ali Mohammadi
Number Theory

Let $\mathbb{F}_q$ be a finite field of order $q$, where $q$ is a power of a prime. For a set $A \subset \mathbb{F}_q$, under certain structural restrictions, we prove a new explicit lower bound on the size of the product set $A(A + 1)$. Our result improves on the previous best known bound due to Zhelezov and holds under more relaxed restrictions.

Find SimilarView on arXiv