March 31, 2017
Let n be a non-null positive integer and $d(n)$ is the number of positive divisors of n, called the divisor function. Of course, $d(n) \leq n$. $d(n) = 1$ if and only if $n = 1$. For $n > 2$ we have $d(n) \geq 2$ and in this paper we try to find the smallest $k$ such that $d(d(...d(n)...)) = 2$ where the divisor function is applied $k$ times. At the end of the paper we make a conjecture based on some observations.
Similar papers 1
April 27, 2023
The main result of this thesis is to show that there are only finitely many integers $n$ such that both $n$ and $d(n)$ are highly composite numbers at the same time, where $d(n)$ is the divisor function. Bertrand's postulate [4] is used many times throughout the thesis and allows us to write a proof that is as simple (and as short) as possible. This thesis is meant to solve the open problem from the ``On-Line Encyclopedia of Integer Sequences" (OEIS): A189394 [3]. The main ...
February 12, 2024
Let $p_{\textrm{dsd}} (n)$ be the number of partitions of $n$ into distinct squarefree divisors of $n$. In this note, we find a lower bound for $p_{\textrm{dsd}} (n)$, as well as a sequence of $n$ for which $p_{\textrm{dsd}} (n)$ is unusually large.
December 17, 2019
We introduce and study the recursive divisor function, a recursive analog of the usual divisor function: $\kappa_x(n) = n^x + \sum_{d\lfloor n} \kappa_x(d)$, where the sum is over the proper divisors of $n$. We give a geometrical interpretation of $\kappa_x(n)$, which we use to derive a relation between $\kappa_x(n)$ and $\kappa_0(n)$. For $x \geq 2$, we observe that $\kappa_x(n)/n^x < 1/(2-\zeta(x))$. We show that, for $n \geq 2$, $\kappa_0(n)$ is twice the number of ordered...
October 16, 2022
We prove that $d_k(n)=d_k(n+B)$ infinitely often for any positive integers $k$ and $B$, where $d_k(n)$ denotes the number of divisors of $n$ coprime to $k$.
December 17, 2013
This article establishes a new upper bound on the function $\sigma^{*}(n)$, the sum of all coprime divisors of $n$. The article concludes with two questions concerning this function.
July 7, 2008
Let $f(n)$ denote the number of distinct unordered factorisations of the natural number $n$ into factors larger than 1.In this paper, we address some aspects of the function $f(n)$.
February 10, 2021
The aim of this note is to provoke discussion concerning arithmetic properties of function $p_{d}(n)$ counting partitions of an positive integer $n$ into $d$-th powers, where $d\geq 2$. Besides results concerning the asymptotic behavior of $p_{d}(n)$ a little is known. In the first part of the paper, we prove certain congruences involving functions counting various types of partitions into $d$-th powers. The second part of the paper has experimental nature and contains questi...
February 4, 2015
Given a positive integer $n$ the $k$-fold divisor function $d_k(n)$ equals the number of ordered $k$-tuples of positive integers whose product equals $n$. In this article we study the variance of sums of $d_k(n)$ in short intervals and establish asymptotic formulas for the variance of sums of $d_k(n)$ in short intervals of certain lengths for $k=3$ and for $k \ge 4$ under the assumption of the Lindel\"of hypothesis.
November 22, 2020
We establish an explicit inequality for the number of divisors of an integer $n$. It uses the size of $n$ and its number of distinct prime divisors.
May 16, 2014
The details for the construction of an explicit formula for the divisors function d(n) = #{d | n} are formalized in this article. This formula facilitates a unified approach to the investigation of the error terms of the divisor problem and circle problem.