December 17, 2019
We introduce and study the recursive divisor function, a recursive analog of the usual divisor function: $\kappa_x(n) = n^x + \sum_{d\lfloor n} \kappa_x(d)$, where the sum is over the proper divisors of $n$. We give a geometrical interpretation of $\kappa_x(n)$, which we use to derive a relation between $\kappa_x(n)$ and $\kappa_0(n)$. For $x \geq 2$, we observe that $\kappa_x(n)/n^x < 1/(2-\zeta(x))$. We show that, for $n \geq 2$, $\kappa_0(n)$ is twice the number of ordered factorizations, a problem much studied in its own right. By computing those numbers that are more recursively divisible than all of their predecessors, we recover many of the numbers prevalent in design and technology, and suggest new ones which have yet to be adopted.
Similar papers 1
We recently introduced the recursive divisor function $\kappa_x(n)$, a recursive analogue of the usual divisor function. Here we calculate its Dirichlet series, which is ${\zeta(s-x)}/(2 - \zeta(s))$. We show that $\kappa_x(n)$ is related to the ordinary divisor function by $\kappa_x * \sigma_y = \kappa_y * \sigma_x$, where * denotes the Dirichlet convolution. Using this, we derive several identities relating $\kappa_x$ and some standard arithmetic functions. We also clarify ...
The number of ordered factorizations and the number of recursive divisors are two related arithmetic functions that are recursively defined. But it is hard to construct explicit representations of these functions. Taking advantage of their recursive definition and a geometric interpretation, we derive three closed-form expressions for them both. These expressions shed light on the structure of these functions and their number-theoretic properties. Surprisingly, both functions...
Let n be a non-null positive integer and $d(n)$ is the number of positive divisors of n, called the divisor function. Of course, $d(n) \leq n$. $d(n) = 1$ if and only if $n = 1$. For $n > 2$ we have $d(n) \geq 2$ and in this paper we try to find the smallest $k$ such that $d(d(...d(n)...)) = 2$ where the divisor function is applied $k$ times. At the end of the paper we make a conjecture based on some observations.
October 16, 2016
We give an overview of combinatoric properties of the number of ordered $k$-factorizations $f_k(n,l)$ of an integer, where every factor is greater or equal to $l$. We show that for a large number $k$ of factors, the value of the cumulative sum $F_k(x,l)=\sum\nolimits_{n\leq x} f_k(n,l)$ is a polynomial in $\lfloor \log_l x \rfloor$ and give explicit expressions for the degree and the coefficients of this polynomial. An average order of the number of ordered factorizations for...
February 12, 2024
Let $p_{\textrm{dsd}} (n)$ be the number of partitions of $n$ into distinct squarefree divisors of $n$. In this note, we find a lower bound for $p_{\textrm{dsd}} (n)$, as well as a sequence of $n$ for which $p_{\textrm{dsd}} (n)$ is unusually large.
July 19, 2021
The partitions of the integers can be expressed exactly in an iterative and closed-form expression. This equation is derived from distributing the partitions of a number in a network that locates each partition in a unique and orderly position. From this representation an iterative equation for the function of the number of divisors was derivated. Also, the number of divisors of a integer can be found from a new function called the trace of the number n, trace(n). As a final ...
Let $f(n)$ denote the number of distinct unordered factorisations of the natural number $n$ into factors larger than 1.In this paper, we address some aspects of the function $f(n)$.
May 16, 2014
The details for the construction of an explicit formula for the divisors function d(n) = #{d | n} are formalized in this article. This formula facilitates a unified approach to the investigation of the error terms of the divisor problem and circle problem.
August 24, 2020
The divisor function $\sigma(n)$ sums the divisors of $n$. We call $n$ abundant when $\sigma(n) - n > n$ and perfect when $\sigma(n) - n = n$. I recently introduced the recursive divisor function $a(n)$, the recursive analog of the divisor function. It measures the extent to which a number is highly divisible into parts, such that the parts are highly divisible into subparts, so on. Just as the divisor function motivates the abundant and perfect numbers, the recursive divisor...
February 25, 2017
Certain analytical expressions which "feel" the divisors of natural numbers are investigated. We show that these expressions encode to some extent the well-known algorithm of the sieve of Eratosthenes. Most part of the text is written in pedagogical style, however some formulas are new.