January 26, 2022
We show that transverse coupled K\"ahler-Einstein metrics on toric Sasaki manifolds arise as a critical point of a volume functional. As a preparation for the proof, we re-visit the transverse moment polytopes and contact moment polytopes under the change of Reeb vector fields. Then we apply it to a coupled version of the volume minimization by Martelli-Sparks-Yau. This is done assuming the Calabi-Yau condition of the K\"ahler cone, and the non-coupled case leads to a known e...
August 4, 2001
We calculate the volumes of a large class of Einstein manifolds, namely Sasaki-Einstein manifolds which are the bases of Ricci-flat affine cones described by polynomial embedding relations in C^n. These volumes are important because they allow us to extend and test the AdS/CFT correspondence. We use these volumes to extend the central charge calculation of Gubser (1998) to the generalized conifolds of Gubser, Shatashvili, and Nekrasov (1999). These volumes also allow one to q...
June 28, 2017
In previous work, we have commenced the task of unpacking the $473,800,776$ reflexive polyhedra by Kreuzer and Skarke into a database of Calabi-Yau threefolds (see http://www.rossealtman.com). In this paper, following a pedagogical introduction, we present a new algorithm to isolate Swiss cheese solutions characterized by "holes," or small 4-cycles, descending from the toric divisors inherent to the original four dimensional reflexive polyhedra. Implementing these methods, we...
January 29, 1997
We present a general scheme for identifying fibrations in the framework of toric geometry and provide a large list of weights for Calabi--Yau 4-folds. We find 914,164 weights with degree $d\le150$ whose maximal Newton polyhedra are reflexive and 525,572 weights with degree $d\le4000$ that give rise to weighted projective spaces such that the polynomial defining a hypersurface of trivial canonical class is transversal. We compute all Hodge numbers, using Batyrev's formulas (de...
February 3, 1994
We introduce a special class of convex rational polyhedral cones which allows to construct generalized Calabi-Yau varieties of dimension $(d + 2(r-1))$, where $r$ is a positive integer and d is the dimension of critical string vacua with central chatge $c = 3d$. It is conjectured that the natural combinatorial duality satisfies by these cones corresponds to the mirror involution. Using the theory of toric varieties, we show that our conjecture includes as special cases all al...
March 10, 2011
Generalizing the notions of reflexive polytopes and nef-partitions of Batyrev and Borisov, we propose a mirror symmetry construction for Calabi-Yau complete intersections in Fano toric varieties.
June 22, 2011
We describe the C program mori.x. It is part of PALP, a package for analyzing lattice polytopes. Its main purpose is the construction and analysis of three--dimensional smooth Calabi--Yau hypersurfaces in toric varieties. The ambient toric varieties are given in terms of fans over the facets of reflexive lattice polytopes. The program performs crepant star triangulations of reflexive polytopes and determines the Mori cones of the resulting toric varieties. Furthermore, it com...
March 8, 2013
A Gorenstein polytope of index r is a lattice polytope whose r-th dilate is a reflexive polytope. These objects are of interest in combinatorial commutative algebra and enumerative combinatorics, and play a crucial role in Batyrev's and Borisov's computation of Hodge numbers of mirror-symmetric generic Calabi-Yau complete intersections. In this paper, we report on what is known about smooth Gorenstein polytopes, i.e., Gorenstein polytopes whose normal fan is unimodular. We cl...
February 17, 2017
In this expository note, we review the standard formulation of mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, and compare this construction to a description of mirror symmetry for K3 surfaces which relies on a sublattice of the Picard lattice. We then show how to combine information about the Picard group of a toric ambient space with data about automorphisms of the toric variety to identify families of K3 surfaces with high Picard rank.
November 18, 2022
Using a variational approach, we establish the equivalence between a weighted volume minimization principle and the existence of a conical Calabi-Yau structure on horospherical cones with mild singularities. This allows us to do explicit computations on the examples arising from rank-two symmetric spaces, showing the existence of many irregular horospherical cones.