July 14, 2000
We present results from an inductive algebraic approach to the systematic construction and classification of the `lowest-level' CY3 spaces defined as zeroes of polynomial loci associated with reflexive polyhedra, derived from suitable vectors in complex projective spaces. These CY3 spaces may be sorted into `chains' obtained by combining lower-dimensional projective vectors classified previously. We analyze all the 4242 (259, 6, 1) two- (three-, four-, five-) vector chains, w...
February 19, 2014
Using an inclusion of one reflexive polytope into another is a well-known strategy for connecting the moduli spaces of two Calabi-Yau families. In this paper we look at the question of when an inclusion of reflexive polytopes determines a torically-defined extremal transition between smooth Calabi-Yau hypersurface families. We show this is always possible for reflexive polytopes in dimensions two and three. However, in dimension four and higher, obstructions can occur. This l...
August 4, 2020
We study Calabi-Yau threefolds with large Hodge numbers by constructing and counting triangulations of reflexive polytopes. By counting points in the associated secondary polytopes, we show that the number of fine, regular, star triangulations of polytopes in the Kreuzer-Skarke list is bounded above by $\binom{14,111}{494} \approx 10^{928}$. Adapting a result of Anclin on triangulations of lattice polygons, we obtain a bound on the number of triangulations of each 2-face of e...
November 7, 2022
We provide a user's guide to version 1.0 of the software package CYTools, which we designed to compute the topological data of Calabi-Yau hypersurfaces in toric varieties. CYTools has strong capabilities in analyzing and triangulating polytopes, and can easily handle even the largest polytopes in the Kreuzer-Skarke list. We explain the main functions and the options that can be used to optimize them, including example computations that illustrate efficient handling of large n...
March 20, 2002
We develop some ideas of Morrison and Plesser and formulate a precise mathematical conjecture which has close relations to toric mirror symmetry. Our conjecture, we call it Toric Residue Mirror Conjecture, claims that the generating functions of intersection numbers of divisors on a special sequence of simplicial toric varieties are power series expansions of some rational functions obtained as toric residues. We expect that this conjecture holds true for all Gorenstein toric...
April 30, 2002
We describe our package PALP of C programs for calculations with lattice polytopes and applications to toric geometry, which is freely available on the internet. It contains routines for vertex and facet enumeration, computation of incidences and symmetries, as well as completion of the set of lattice points in the convex hull of a given set of points. In addition, there are procedures specialised to reflexive polytopes such as the enumeration of reflexive subpolytopes, and...
November 26, 2004
Recently an infinite family of explicit Sasaki-Einstein metrics Y^{p,q} on S^2 x S^3 has been discovered, where p and q are two coprime positive integers, with q<p. These give rise to a corresponding family of Calabi-Yau cones, which moreover are toric. Aided by several recent results in toric geometry, we show that these are Kahler quotients C^4//U(1), namely the vacua of gauged linear sigma models with charges (p,p,-p+q,-p-q), thereby generalising the conifold, which is p=1...
November 22, 2023
We study the problem of maximum likelihood (ML) estimation for statistical models defined by reflexive polytopes. Our focus is on the maximum likelihood degree of these models as an algebraic measure of complexity of the corresponding optimization problem. We compute the ML degrees of all 4319 classes of three-dimensional reflexive polytopes, and observe some surprising behavior in terms of the presence of gaps between ML degrees and degrees of the associated toric varieties....
September 1, 2010
The nef cone of a projective variety Y is an important and often elusive invariant. In this paper we construct two polyhedral lower bounds and one polyhedral upper bound for the nef cone of Y using an embedding of Y into a toric variety. The lower bounds generalize the combinatorial description of the nef cone of a Mori dream space, while the upper bound generalizes the F-conjecture for the nef cone of the moduli space \bar{M}_{0,n} to a wide class of varieties.
March 7, 1996
According to a recently proposed scheme for the classification of reflexive polyhedra, weight systems of a certain type play a prominent role. These weight systems are classified for the cases $n=3$ and $n=4$, corresponding to toric varieties with K3 and Calabi--Yau hypersurfaces, respectively. For $n=3$ we find the well known 95 weight systems corresponding to weighted $\IP^3$'s that allow transverse polynomials, whereas for $n=4$ there are 184026 weight systems, including t...