November 8, 2017
Similar papers 4
March 1, 2021
The purpose of the present paper is to study the computation complexity of deep ReLU neural networks to approximate functions in H\"older-Nikol'skii spaces of mixed smoothness $H_\infty^\alpha(\mathbb{I}^d)$ on the unit cube $\mathbb{I}^d:=[0,1]^d$. In this context, for any function $f\in H_\infty^\alpha(\mathbb{I}^d)$, we explicitly construct nonadaptive and adaptive deep ReLU neural networks having an output that approximates $f$ with a prescribed accuracy $\varepsilon$, an...
August 10, 2016
The paper briefy reviews several recent results on hierarchical architectures for learning from examples, that may formally explain the conditions under which Deep Convolutional Neural Networks perform much better in function approximation problems than shallow, one-hidden layer architectures. The paper announces new results for a non-smooth activation function - the ReLU function - used in present-day neural networks, as well as for the Gaussian networks. We propose a new de...
May 3, 2024
We establish the fundamental limits in the approximation of Lipschitz functions by deep ReLU neural networks with finite-precision weights. Specifically, three regimes, namely under-, over-, and proper quantization, in terms of minimax approximation error behavior as a function of network weight precision, are identified. This is accomplished by deriving nonasymptotic tight lower and upper bounds on the minimax approximation error. Notably, in the proper-quantization regime, ...
May 7, 2019
We consider efficiency in the implementation of deep neural networks. Hardware accelerators are gaining interest as machine learning becomes one of the drivers of high-performance computing. In these accelerators, the directed graph describing a neural network can be implemented as a directed graph describing a Boolean circuit. We make this observation precise, leading naturally to an understanding of practical neural networks as discrete functions, and show that so-called bi...
February 21, 2021
Assessing the complexity of functions computed by a neural network helps us understand how the network will learn and generalize. One natural measure of complexity is how the network distorts length - if the network takes a unit-length curve as input, what is the length of the resulting curve of outputs? It has been widely believed that this length grows exponentially in network depth. We prove that in fact this is not the case: the expected length distortion does not grow wi...
October 9, 2018
We consider the computational complexity of training depth-2 neural networks composed of rectified linear units (ReLUs). We show that, even for the case of a single ReLU, finding a set of weights that minimizes the squared error (even approximately) for a given training set is NP-hard. We also show that for a simple network consisting of two ReLUs, the error minimization problem is NP-hard, even in the realizable case. We complement these hardness results by showing that, whe...
May 5, 2019
This article is concerned with the approximation and expressive powers of deep neural networks. This is an active research area currently producing many interesting papers. The results most commonly found in the literature prove that neural networks approximate functions with classical smoothness to the same accuracy as classical linear methods of approximation, e.g. approximation by polynomials or by piecewise polynomials on prescribed partitions. However, approximation by n...
October 7, 2021
We study the memorization power of feedforward ReLU neural networks. We show that such networks can memorize any $N$ points that satisfy a mild separability assumption using $\tilde{O}\left(\sqrt{N}\right)$ parameters. Known VC-dimension upper bounds imply that memorizing $N$ samples requires $\Omega(\sqrt{N})$ parameters, and hence our construction is optimal up to logarithmic factors. We also give a generalized construction for networks with depth bounded by $1 \leq L \leq ...
July 1, 2020
In this paper, we study the sample complexity lower bounds for the exact recovery of parameters and for a positive excess risk of a feed-forward, fully-connected neural network for binary classification, using information-theoretic tools. We prove these lower bounds by the existence of a generative network characterized by a backwards data generating process, where the input is generated based on the binary output, and the network is parametrized by weight parameters for the ...
November 27, 2020
We prove several hardness results for training depth-2 neural networks with the ReLU activation function; these networks are simply weighted sums (that may include negative coefficients) of ReLUs. Our goal is to output a depth-2 neural network that minimizes the square loss with respect to a given training set. We prove that this problem is NP-hard already for a network with a single ReLU. We also prove NP-hardness for outputting a weighted sum of $k$ ReLUs minimizing the squ...