November 8, 2017
Similar papers 5
November 27, 2019
A recent line of research on deep learning focuses on the extremely over-parameterized setting, and shows that when the network width is larger than a high degree polynomial of the training sample size $n$ and the inverse of the target error $\epsilon^{-1}$, deep neural networks learned by (stochastic) gradient descent enjoy nice optimization and generalization guarantees. Very recently, it is shown that under certain margin assumptions on the training data, a polylogarithmic...
November 15, 2021
In this article we present new results on neural networks with linear threshold activation functions. We precisely characterize the class of functions that are representable by such neural networks and show that 2 hidden layers are necessary and sufficient to represent any function representable in the class. This is a surprising result in the light of recent exact representability investigations for neural networks using other popular activation functions like rectified line...
March 8, 2017
We prove new upper and lower bounds on the VC-dimension of deep neural networks with the ReLU activation function. These bounds are tight for almost the entire range of parameters. Letting $W$ be the number of weights and $L$ be the number of layers, we prove that the VC-dimension is $O(W L \log(W))$, and provide examples with VC-dimension $\Omega( W L \log(W/L) )$. This improves both the previously known upper bounds and lower bounds. In terms of the number $U$ of non-linear...
February 10, 2022
We give superpolynomial statistical query (SQ) lower bounds for learning two-hidden-layer ReLU networks with respect to Gaussian inputs in the standard (noise-free) model. No general SQ lower bounds were known for learning ReLU networks of any depth in this setting: previous SQ lower bounds held only for adversarial noise models (agnostic learning) or restricted models such as correlational SQ. Prior work hinted at the impossibility of our result: Vempala and Wilmes showed ...
August 1, 2023
We investigate the descriptive complexity of a class of neural networks with unrestricted topologies and piecewise polynomial activation functions. We consider the general scenario where the running time is unlimited and floating-point numbers are used for simulating reals. We characterize these neural networks with a rule-based logic for Boolean networks. In particular, we show that the sizes of the neural networks and the corresponding Boolean rule formulae are polynomially...
March 7, 2021
Artificial neural networks (ANNs) have become a very powerful tool in the approximation of high-dimensional functions. Especially, deep ANNs, consisting of a large number of hidden layers, have been very successfully used in a series of practical relevant computational problems involving high-dimensional input data ranging from classification tasks in supervised learning to optimal decision problems in reinforcement learning. There are also a number of mathematical results in...
February 11, 2024
We prove an exponential separation between depth 2 and depth 3 neural networks, when approximating an $\mathcal{O}(1)$-Lipschitz target function to constant accuracy, with respect to a distribution with support in $[0,1]^{d}$, assuming exponentially bounded weights. This addresses an open problem posed in \citet{safran2019depth}, and proves that the curse of dimensionality manifests in depth 2 approximation, even in cases where the target function can be represented efficient...
January 4, 2019
The threshold degree of a Boolean function $f\colon\{0,1\}^n\to\{0,1\}$ is the minimum degree of a real polynomial $p$ that represents $f$ in sign: $\mathrm{sgn}\; p(x)=(-1)^{f(x)}.$ A related notion is sign-rank, defined for a Boolean matrix $F=[F_{ij}]$ as the minimum rank of a real matrix $M$ with $\mathrm{sgn}\; M_{ij}=(-1)^{F_{ij}}$. Determining the maximum threshold degree and sign-rank achievable by constant-depth circuits ($\text{AC}^{0}$) is a well-known and extensiv...
March 29, 2019
We consider deep feedforward neural networks with rectified linear units from a signal processing perspective. In this view, such representations mark the transition from using a single (data-driven) linear representation to utilizing a large collection of affine linear representations tailored to particular regions of the signal space. This paper provides a precise description of the individual affine linear representations and corresponding domain regions that the (data-dri...
December 27, 2023
In this paper, we investigate the expressivity and approximation properties of deep neural networks employing the ReLU$^k$ activation function for $k \geq 2$. Although deep ReLU networks can approximate polynomials effectively, deep ReLU$^k$ networks have the capability to represent higher-degree polynomials precisely. Our initial contribution is a comprehensive, constructive proof for polynomial representation using deep ReLU$^k$ networks. This allows us to establish an uppe...