November 14, 2017
Similar papers 4
December 28, 2015
The stochastic block model (SBM) is a popular framework for studying community detection in networks. This model is limited by the assumption that all nodes in the same community are statistically equivalent and have equal expected degrees. The degree-corrected stochastic block model (DCSBM) is a natural extension of SBM that allows for degree heterogeneity within communities. This paper proposes a convexified modularity maximization approach for estimating the hidden communi...
July 22, 2021
The mixed membership stochastic blockmodel (MMSB) is a popular Bayesian network model for community detection. Fitting such large Bayesian network models quickly becomes computationally infeasible when the number of nodes grows into hundreds of thousands and millions. In this paper we propose a novel mini-batch strategy based on aggregated relational data that leverages nodal information to fit MMSB to massive networks. We describe a scalable inference method that can utilize...
November 4, 2022
The paper tackles the problem of clustering multiple networks, directed or not, that do not share the same set of vertices, into groups of networks with similar topology. A statistical model-based approach based on a finite mixture of stochastic block models is proposed. A clustering is obtained by maximizing the integrated classification likelihood criterion. This is done by a hierarchical agglomerative algorithm, that starts from singleton clusters and successively merges c...
August 28, 2018
The framework of statistical inference has been successfully used to detect the meso-scale structures in complex networks, such as community structure, core-periphery (CP) structure. The main principle is that the stochastic block model (SBM) is used to fit the observed network and the learnt parameters indicate the group assignment, in which the parameters of model are often calculated via an expectation-maximization (EM) algorithm and a belief propagation (BP) algorithm is ...
March 30, 2019
Multiplex networks have become increasingly more prevalent in many fields, and have emerged as a powerful tool for modeling the complexity of real networks. There is a critical need for developing inference models for multiplex networks that can take into account potential dependencies across different layers, particularly when the aim is community detection. We add to a limited literature by proposing a novel and efficient Bayesian model for community detection in multiplex ...
June 7, 2024
Graph clustering is a central topic in unsupervised learning with a multitude of practical applications. In recent years, multi-view graph clustering has gained a lot of attention for its applicability to real-world instances where one has access to multiple data sources. In this paper we formalize a new family of models, called \textit{multi-view stochastic block models} that captures this setting. For this model, we first study efficient algorithms that naively work on th...
July 4, 2020
In network inference applications, it is often desirable to detect community structure, namely to cluster vertices into groups, or blocks, according to some measure of similarity. Beyond mere adjacency matrices, many real networks also involve vertex covariates that carry key information about underlying block structure in graphs. To assess the effects of such covariates on block recovery, we present a comparative analysis of two model-based spectral algorithms for clustering...
July 24, 2019
In this paper, a noisy version of the stochastic block model (NSBM) is introduced and we investigate the three following statistical inferences in this model: estimation of the model parameters, clustering of the nodes and identification of the underlying graph. While the two first inferences are done by using a variational expectation-maximization (VEM) algorithm, the graph inference is done by controlling the false discovery rate (FDR), that is, the average proportion of er...
November 5, 2013
Analyzing and understanding the structure of complex relational data is important in many applications including analysis of the connectivity in the human brain. Such networks can have prominent patterns on different scales, calling for a hierarchically structured model. We propose two non-parametric Bayesian hierarchical network models based on Gibbs fragmentation tree priors, and demonstrate their ability to capture nested patterns in simulated networks. On real networks we...
June 10, 2024
We consider the two-sample testing problem for networks, where the goal is to determine whether two sets of networks originated from the same stochastic model. Assuming no vertex correspondence and allowing for different numbers of nodes, we address a fundamental network testing problem that goes beyond simple adjacency matrix comparisons. We adopt the stochastic block model (SBM) for network distributions, due to their interpretability and the potential to approximate more g...