November 14, 2017
Similar papers 5
February 6, 2016
The stochastic block model (SBM) is a generative model revealing macroscopic structures in graphs. Bayesian methods are used for (i) cluster assignment inference and (ii) model selection for the number of clusters. In this paper, we study the behavior of Bayesian inference in the SBM in the large sample limit. Combining variational approximation and Laplace's method, a consistent criterion of the fully marginalized log-likelihood is established. Based on that, we derive a tra...
February 18, 2014
We present a selective review on probabilistic modeling of heterogeneity in random graphs. We focus on latent space models and more particularly on stochastic block models and their extensions that have undergone major developments in the last five years.
September 11, 2023
We consider community detection from multiple correlated graphs sharing the same community structure. The correlated graphs are generated by independent subsampling of a parent graph sampled from the stochastic block model. The vertex correspondence between the correlated graphs is assumed to be unknown. We consider the two-step procedure where the vertex correspondence between the correlated graphs is first revealed, and the communities are recovered from the union of the co...
July 14, 2021
We consider the task of learning latent community structure from multiple correlated networks. First, we study the problem of learning the latent vertex correspondence between two edge-correlated stochastic block models, focusing on the regime where the average degree is logarithmic in the number of vertices. We derive the precise information-theoretic threshold for exact recovery: above the threshold there exists an estimator that outputs the true correspondence with probabi...
April 18, 2011
A fundamental problem in the analysis of network data is the detection of network communities, groups of densely interconnected nodes, which may be overlapping or disjoint. Here we describe a method for finding overlapping communities based on a principled statistical approach using generative network models. We show how the method can be implemented using a fast, closed-form expectation-maximization algorithm that allows us to analyze networks of millions of nodes in reasona...
August 7, 2020
Most empirical studies of complex networks do not return direct, error-free measurements of network structure. Instead, they typically rely on indirect measurements that are often error-prone and unreliable. A fundamental problem in empirical network science is how to make the best possible estimates of network structure given such unreliable data. In this paper we describe a fully Bayesian method for reconstructing networks from observational data in any format, even when th...
June 11, 2012
In the high dimensional Stochastic Blockmodel for a random network, the number of clusters (or blocks) K grows with the number of nodes N. Two previous studies have examined the statistical estimation performance of spectral clustering and the maximum likelihood estimator under the high dimensional model; neither of these results allow K to grow faster than N^{1/2}. We study a model where, ignoring log terms, K can grow proportionally to N. Since the number of clusters must b...
May 23, 2016
A central problem in analyzing networks is partitioning them into modules or communities. One of the best tools for this is the stochastic block model, which clusters vertices into blocks with statistically homogeneous pattern of links. Despite its flexibility and popularity, there has been a lack of principled statistical model selection criteria for the stochastic block model. Here we propose a Bayesian framework for choosing the number of blocks as well as comparing it to ...
November 6, 2014
The stochastic block model and its variants have been a popular tool in analyzing large network data with community structures. In this paper we develop an efficient network cross-validation (NCV) approach to determine the number of communities, as well as to choose between the regular stochastic block model and the degree corrected block model. The proposed NCV method is based on a block-wise node-pair splitting technique, combined with an integrated step of community recove...
May 15, 2016
We introduce a new family of network models, called hierarchical network models, that allow us to represent in an explicit manner the stochastic dependence among the dyads (random ties) of the network. In particular, each member of this family can be associated with a graphical model defining conditional independence clauses among the dyads of the network, called the dependency graph. Every network model with dyadic independence assumption can be generalized to construct memb...