December 18, 2017
Similar papers 3
February 28, 2023
The small cross section of Raman scattering poses a great challenge for its direct study at the single-molecule level. By exploiting the high Franck-Condon factor of a common-mode resonance, choosing a large vibrational frequency difference in electronic ground and excited states and operation at T < 2K, we succeed at driving a coherent stimulated Raman transition in individual molecules. We observe and model a spectral splitting that serves as a characteristic signature of t...
April 21, 2006
We describe a method to probe the spectral fluctuations of a transition over broad ranges of frequencies and timescales with the high spectral resolution of Fourier spectroscopy, and a temporal resolution as high as the excited state lifetime, even in the limit of very low photocounting rates. The method derives from a simple relation between the fluorescence spectral dynamics of a single radiating dipole and its fluorescence intensity correlations at the outputs of a continu...
May 28, 2007
We consider the theory of the non-linear spectroscopy for a single molecule undergoing stochastic dynamics and interacting with a sequence of two laser pulses. General expressions for photon counting statistics are obtained, and an exact solution to the problem of the Kubo-Anderson process is found. In the limit of impulsive pulses the information on the photon statistics is contained in the molecule's dipole correlation function. The selective limit where temporal resolution...
September 9, 2008
A two level model of a single molecule undergoing spectral diffusion dynamics and interacting with a sequence of two short laser pulses is investigated. Analytical solution for the probability of n=0,1,2 photon emission events for the telegraph and Gaussian processes are obtained. We examine under what circumstances the photon statistics emerging from such pump-probe set up provides new information on the stochastic process parameters, and what are the measurement limitations...
March 22, 2010
This is the first in a series of two papers investigating the effect of electron-phonon coupling in two-dimensional Fourier transformed electronic spectroscopy. We present a series of one- and two-dimensional nonlinear spectroscopic techniques for studying a dye molecule in solution. Ultrafast laser pulse excitation of an electronic transition coupled to vibrational modes induces a propagating vibrational wave packet that manifests itself in oscillating signal intensities and...
September 15, 2017
Temporal-spectral modes of light provide a fundamental window into the nature of atomic and molecular systems and offer robust means for information encoding. Methods to precisely characterize the temporal-spectral state of light at the single-photon level thus play a central role in understanding quantum emitters and are a key requirement for quantum technologies that harness single-photon states. Here we demonstrate an optical reference-free method, which melds techniques f...
November 17, 2023
We explore long lived electronic coherences in molecules using shaped ultrafast laser pulses to launch and probe entangled nuclear-electronic wave packets. We find that under certain conditions, the electronic phase remains well defined despite vibrational motion along many degrees of freedom. The experiments are interpreted with the help of electronic structure calculations which corroborate our interpretation of the measurements
April 25, 2013
Coherent light pulses of few to hundreds of femtoseconds (fs) duration have prolifically served the field of ultrafast phenomena. While fs pulses address mainly dynamics of nuclear motion in molecules or lattices in the gas, liquid or condensed matter phase, the advent of attosecond pulses has in recent years provided direct experimental access to ultrafast electron dynamics. However, there are processes involving nuclear motion in molecules and in particular coupled electron...
July 8, 2015
This review article discusses advances in the use of time-resolved photoelectron spectroscopy for the study of non-adiabatic processes in molecules. A theoretical treatment of the experiments is presented together with a number of experimental examples.
February 11, 2023
Molecular polaritons are hybrid states of photonic and molecular character that form when molecules strongly interact with light. Strong coupling tunes energy levels and importantly, can modify molecular properties (e.g. photoreaction rates) opening an avenue for novel polariton chemistry. In this perspective, we focus on the collective aspects of strongly coupled molecular systems and how this pertains to the dynamical response of such systems, which though of key importance...