February 25, 2018
In this paper we obtain a series of asymptotic formulae in the sum--product phenomena over the prime field $\mathbf{F}_p$. In the proofs we use usual incidence theorems in $\mathbf{F}_p$, as well as the growth result in ${\rm SL}_2 (\mathbf{F}_p)$ due to Helfgott. Here some of our applications: $\bullet~$ a new bound for the number of the solutions to the equation $(a_1-a_2) (a_3-a_4) = (a'_1-a'_2) (a'_3-a'_4)$, $\,a_i, a'_i\in A$, $A$ is an arbitrary subset of $\mathbf{F}_p$, $\bullet~$ a new effective bound for multilinear exponential sums of Bourgain, $\bullet~$ an asymptotic analogue of the Balog--Wooley decomposition theorem, $\bullet~$ growth of $p_1(b) + 1/(a+p_2 (b))$, where $a,b$ runs over two subsets of $\mathbf{F}_p$, $p_1,p_2 \in \mathbf{F}_p [x]$ are two non--constant polynomials, $\bullet~$ new bounds for some exponential sums with multiplicative and additive characters.
Similar papers 1
April 14, 2009
These notes arose from my Cambridge Part III course on Additive Combinatorics, given in Lent Term 2009. The aim was to understand the simplest proof of the Bourgain-Glibichuk-Konyagin bounds for exponential sums over subgroups. As a byproduct one obtains a clean proof of the Bourgain-Katz-Tao theorem on the sum-product phenomenon in F_p. The arguments are essentially extracted from a paper of Bourgain, and I benefitted very much from being in receipt of unpublished course not...
February 26, 2007
Let $\mathbb{F}_p$ be the field of residue classes modulo a prime number $p$ and let $A$ be a non-empty subset of $\mathbb{F}_p.$ In this paper we give an explicit version of the sum-product estimate of Bourgain, Katz, Tao and Bourgain, Glibichuk, Konyagin on the size of $\max\{|A+A|, |AA|\}.$ In particular, our result implies that if $1<|A|\le p^{7/13}(\log p)^{-4/13},$ then $$ \max\{|A+A|, |AA|\}\gg \frac{|A|^{15/14}}{(\log|A|)^{2/7}} . $$
July 12, 2009
Let $\mathbb{F}_p$ be the field of residue classes modulo a prime number $p$ and let $A$ be a nonempty subset of $\mathbb{F}_p$. In this paper we show that if $|A|\preceq p^{0.5}$, then \[ \max\{|A\pm A|,|AA|\}\succeq|A|^{13/12};\] if $|A|\succeq p^{0.5}$, then \[ \max\{|A\pm A|,|AA|\}\succapprox \min\{|A|^{13/12}(\frac{|A|}{p^{0.5}})^{1/12},|A|(\frac{p}{|A|})^{1/11}\}.\] These results slightly improve the estimates of Bourgain-Garaev and Shen. Sum-product estimates on differ...
September 29, 2013
In this paper we provide in $\bFp$ expanding lower bounds for two variables functions $f(x,y)$ in connection with the product set or the sumset. The sum-product problem has been hugely studied in the recent past. A typical result in $\bFp^*$ is the existenceness of $\Delta(\alpha)>0$ such that if $|A|\asymp p^{\alpha}$ then $$ \max(|A+A|,|A\cdot A|)\gg |A|^{1+\Delta(\alpha)}, $$ Our aim is to obtain analogous results for related pairs of two-variable functions $f(x,y)$ and $g...
December 4, 2018
This paper aims to study in more depth the relation between growth in matrix groups ${{\rm SL_2}}(\mathbf{F})$ and ${{\rm Aff}}(\mathbf{F})$ over a field $\mathbf{F}$ by multiplication and geometric incidence estimates, associated with the sum-product phenomenon over $\mathbf{F}$. It presents streamlined proofs of Helfgott's theorems on growth in the $\mathbf{F}_p$-case, which avoid sum-product estimates. For ${{\rm SL_2}}(\mathbf{F}_p)$, for sets exceeding in size some absol...
January 6, 2017
This is an expository survey on recent sum-product results in finite fields. We present a number of sum-product or "expander" results that say that if $|A| > p^{2/3}$ then some set determined by sums and product of elements of $A$ is nearly as large as possible, and if $|A|<p^{2/3}$ then the set in question is significantly larger that $A$. These results are based on a point-plane incidence bound of Rudnev, and are quantitatively stronger than a wave of earlier results foll...
December 9, 2020
We give an improved bound on the famed sum-product estimate in a field of residue class modulo $p$ ($\mathbb{F}_{p}$) by Erd\H{o}s and Szemeredi, and a non-empty set $A \subset \mathbb{F}_{p}$ such that: $$ \max \{|A+A|,|A A|\} \gg \min \left\{\frac{|A|^{15 / 14} \max \left\{1,|A|^{1 / 7} p^{-1 / 14}\right\}}{(\log |A|)^{2 / 7}}, \frac{|A|^{11 / 12} p^{1 / 12}}{(\log |A|)^{1 / 3}}\right\}, $$ and more importantly: $$\max \{|A+A|,|A A|\} \gg \frac{|A|^{15 / 14}}{(\log |A|)^{2 ...
July 29, 2018
In this paper we obtain a new sum-product estimate in prime fields. In particular, we show that if $A\subseteq \mathbb{F}_p$ satisfies $|A|\le p^{64/117}$ then $$ \max\{|A\pm A|, |AA|\} \gtrsim |A|^{39/32}. $$ Our argument builds on and improves some recent results of Shakan and Shkredov which use the eigenvalue method to reduce to estimating a fourth moment energy and the additive energy $E^+(P)$ of some subset $P\subseteq A+A$. Our main novelty comes from reducing the estim...
June 5, 2007
Let $\mathbb{F}_p$ be the field of a prime order $p.$ It is known that for any integer $N\in [1,p]$ one can construct a subset $A\subset\mathbb{F}_p$ with $|A|= N$ such that $$ \max\{|A+A|, |AA|\}\ll p^{1/2}|A|^{1/2}. $$ In the present paper we prove that if $A\subset \mathbb{F}_p$ with $|A|>p^{2/3},$ then $$ \max\{|A+A|, |AA|\}\gg p^{1/2}|A|^{1/2}. $$
April 13, 2015
We give nontrivial bounds for the bilinear sums $$ \sum_{u = 1}^{U} \sum_{v=1}^V \alpha_u \beta_v \mathbf{\,e}_p(u/f(v)) $$ where $\mathbf{\,e}_p(z)$ is a nontrivial additive character of the prime finite field ${\mathbb F}_p$ of $p$ elements, with integers $U$, $V$, a polynomial $f\in {\mathbb F}_p[X] $ and some complex weights $\{\alpha_u\}$, $\{\beta_v\}$. In particular, for $f(X)=aX+b$ we obtain new bounds of bilinear sums with Kloosterman fractions. We also obtain new bo...