ID: 1802.09066

On asymptotic formulae in some sum-product questions

February 25, 2018

View on ArXiv
Ilya D. Shkredov
Mathematics
Number Theory
Combinatorics

In this paper we obtain a series of asymptotic formulae in the sum--product phenomena over the prime field $\mathbf{F}_p$. In the proofs we use usual incidence theorems in $\mathbf{F}_p$, as well as the growth result in ${\rm SL}_2 (\mathbf{F}_p)$ due to Helfgott. Here some of our applications: $\bullet~$ a new bound for the number of the solutions to the equation $(a_1-a_2) (a_3-a_4) = (a'_1-a'_2) (a'_3-a'_4)$, $\,a_i, a'_i\in A$, $A$ is an arbitrary subset of $\mathbf{F}_p$, $\bullet~$ a new effective bound for multilinear exponential sums of Bourgain, $\bullet~$ an asymptotic analogue of the Balog--Wooley decomposition theorem, $\bullet~$ growth of $p_1(b) + 1/(a+p_2 (b))$, where $a,b$ runs over two subsets of $\mathbf{F}_p$, $p_1,p_2 \in \mathbf{F}_p [x]$ are two non--constant polynomials, $\bullet~$ new bounds for some exponential sums with multiplicative and additive characters.

Similar papers 1

Sum-product phenomena in F_p: a brief introduction

April 14, 2009

90% Match
Ben Green
Number Theory
Combinatorics

These notes arose from my Cambridge Part III course on Additive Combinatorics, given in Lent Term 2009. The aim was to understand the simplest proof of the Bourgain-Glibichuk-Konyagin bounds for exponential sums over subgroups. As a byproduct one obtains a clean proof of the Bourgain-Katz-Tao theorem on the sum-product phenomenon in F_p. The arguments are essentially extracted from a paper of Bourgain, and I benefitted very much from being in receipt of unpublished course not...

Find SimilarView on arXiv

An explicit sum-product estimate in $\mathbb{F}_p$

February 26, 2007

88% Match
M. Z. Garaev
Number Theory

Let $\mathbb{F}_p$ be the field of residue classes modulo a prime number $p$ and let $A$ be a non-empty subset of $\mathbb{F}_p.$ In this paper we give an explicit version of the sum-product estimate of Bourgain, Katz, Tao and Bourgain, Glibichuk, Konyagin on the size of $\max\{|A+A|, |AA|\}.$ In particular, our result implies that if $1<|A|\le p^{7/13}(\log p)^{-4/13},$ then $$ \max\{|A+A|, |AA|\}\gg \frac{|A|^{15/14}}{(\log|A|)^{2/7}} . $$

Find SimilarView on arXiv

Slightly improved sum-product estimates in fields of prime order

July 12, 2009

88% Match
Liangpan Li
Number Theory
Combinatorics

Let $\mathbb{F}_p$ be the field of residue classes modulo a prime number $p$ and let $A$ be a nonempty subset of $\mathbb{F}_p$. In this paper we show that if $|A|\preceq p^{0.5}$, then \[ \max\{|A\pm A|,|AA|\}\succeq|A|^{13/12};\] if $|A|\succeq p^{0.5}$, then \[ \max\{|A\pm A|,|AA|\}\succapprox \min\{|A|^{13/12}(\frac{|A|}{p^{0.5}})^{1/12},|A|(\frac{p}{|A|})^{1/11}\}.\] These results slightly improve the estimates of Bourgain-Garaev and Shen. Sum-product estimates on differ...

Find SimilarView on arXiv

Conditional expanding bounds for two-variables functions over prime fields

September 29, 2013

88% Match
Norbert Hegyvári, François Hennecart
Number Theory

In this paper we provide in $\bFp$ expanding lower bounds for two variables functions $f(x,y)$ in connection with the product set or the sumset. The sum-product problem has been hugely studied in the recent past. A typical result in $\bFp^*$ is the existenceness of $\Delta(\alpha)>0$ such that if $|A|\asymp p^{\alpha}$ then $$ \max(|A+A|,|A\cdot A|)\gg |A|^{1+\Delta(\alpha)}, $$ Our aim is to obtain analogous results for related pairs of two-variable functions $f(x,y)$ and $g...

Find SimilarView on arXiv

On growth rate in $SL_2(\mathbf{F}_p)$, the affine group and sum-product type implications

December 4, 2018

87% Match
Misha Rudnev, Ilya D. Shkredov
Combinatorics

This paper aims to study in more depth the relation between growth in matrix groups ${{\rm SL_2}}(\mathbf{F})$ and ${{\rm Aff}}(\mathbf{F})$ over a field $\mathbf{F}$ by multiplication and geometric incidence estimates, associated with the sum-product phenomenon over $\mathbf{F}$. It presents streamlined proofs of Helfgott's theorems on growth in the $\mathbf{F}_p$-case, which avoid sum-product estimates. For ${{\rm SL_2}}(\mathbf{F}_p)$, for sets exceeding in size some absol...

Find SimilarView on arXiv

A Second Wave of Expanders over Finite Fields

January 6, 2017

87% Match
Brendan Murphy, Giorgis Petridis
Combinatorics

This is an expository survey on recent sum-product results in finite fields. We present a number of sum-product or "expander" results that say that if $|A| > p^{2/3}$ then some set determined by sums and product of elements of $A$ is nearly as large as possible, and if $|A|<p^{2/3}$ then the set in question is significantly larger that $A$. These results are based on a point-plane incidence bound of Rudnev, and are quantitatively stronger than a wave of earlier results foll...

Find SimilarView on arXiv

An improved bound on the sum-product estimate in $\mathbb{F}_{p}$

December 9, 2020

87% Match
Connor Paul Wilson
Combinatorics
Number Theory

We give an improved bound on the famed sum-product estimate in a field of residue class modulo $p$ ($\mathbb{F}_{p}$) by Erd\H{o}s and Szemeredi, and a non-empty set $A \subset \mathbb{F}_{p}$ such that: $$ \max \{|A+A|,|A A|\} \gg \min \left\{\frac{|A|^{15 / 14} \max \left\{1,|A|^{1 / 7} p^{-1 / 14}\right\}}{(\log |A|)^{2 / 7}}, \frac{|A|^{11 / 12} p^{1 / 12}}{(\log |A|)^{1 / 3}}\right\}, $$ and more importantly: $$\max \{|A+A|,|A A|\} \gg \frac{|A|^{15 / 14}}{(\log |A|)^{2 ...

Find SimilarView on arXiv

A new sum-product estimate in prime fields

July 29, 2018

87% Match
Changhao Chen, Bryce Kerr, Ali Mohammadi
Combinatorics
Number Theory

In this paper we obtain a new sum-product estimate in prime fields. In particular, we show that if $A\subseteq \mathbb{F}_p$ satisfies $|A|\le p^{64/117}$ then $$ \max\{|A\pm A|, |AA|\} \gtrsim |A|^{39/32}. $$ Our argument builds on and improves some recent results of Shakan and Shkredov which use the eigenvalue method to reduce to estimating a fourth moment energy and the additive energy $E^+(P)$ of some subset $P\subseteq A+A$. Our main novelty comes from reducing the estim...

Find SimilarView on arXiv

The sum-product estimate for large subsets of prime fields

June 5, 2007

86% Match
M. Z. Garaev
Number Theory
Combinatorics

Let $\mathbb{F}_p$ be the field of a prime order $p.$ It is known that for any integer $N\in [1,p]$ one can construct a subset $A\subset\mathbb{F}_p$ with $|A|= N$ such that $$ \max\{|A+A|, |AA|\}\ll p^{1/2}|A|^{1/2}. $$ In the present paper we prove that if $A\subset \mathbb{F}_p$ with $|A|>p^{2/3},$ then $$ \max\{|A+A|, |AA|\}\gg p^{1/2}|A|^{1/2}. $$

Find SimilarView on arXiv

On Bilinear Exponential and Character Sums with Reciprocals of Polynomials

April 13, 2015

86% Match
Igor E. Shparlinski
Number Theory

We give nontrivial bounds for the bilinear sums $$ \sum_{u = 1}^{U} \sum_{v=1}^V \alpha_u \beta_v \mathbf{\,e}_p(u/f(v)) $$ where $\mathbf{\,e}_p(z)$ is a nontrivial additive character of the prime finite field ${\mathbb F}_p$ of $p$ elements, with integers $U$, $V$, a polynomial $f\in {\mathbb F}_p[X] $ and some complex weights $\{\alpha_u\}$, $\{\beta_v\}$. In particular, for $f(X)=aX+b$ we obtain new bounds of bilinear sums with Kloosterman fractions. We also obtain new bo...

Find SimilarView on arXiv