March 13, 2018
Similar papers 4
June 27, 2024
Recent advances have linked various statements involving sumsets and cardinalities with corresponding statements involving sums of random variables and entropies. In this vein, this paper shows that the quantity $2{\bf H}\{X, Y\} - {\bf H}\{X+Y\}$ is a natural entropic analogue of the additive energy $E(A,B)$ between two sets. We develop some basic theory surrounding this quantity, and demonstrate its role in the proof of Tao's entropy variant of the Balog--Szemer\'edi--Gower...
November 5, 2021
The main results of this paper concern growth in sums of a $k$-convex function $f$. Firstly, we streamline the proof of a growth result for $f(A)$ where $A$ has small additive doubling, and improve the bound by removing logarithmic factors. The result yields an optimal bound for \[ |2^k f(A) - (2^k-1)f(A)|. \] We also generalise a recent result of Hanson, Roche-Newton and Senger, by proving that for any finite $A\subset \mathbb{R}$ \[ | 2^k f(sA-sA) - (2^k-1) f(sA-sA)| \g...
February 24, 2014
A variation on the sum-product problem seeks to show that a set which is defined by additive and multiplicative operations will always be large. In this paper, we prove new results of this type. In particular, we show that for any finite set $A$ of positive real numbers, it is true that $$\left|\left\{\frac{a+b}{c+d}:a,b,c,d\in{A}\right\}\right|\geq{2|A|^2-1}.$$ As a consequence of this result, it is also established that $$|4^{k-1}A^{(k)}|:=|\underbrace{\underbrace{A\cdots{A...
August 22, 2011
A set of reals $A=\{a_1,...,a_n\}$ labeled in increasing order is called convex if there exists a continuous strictly convex function $f$ such that $f(i)=a_i$ for every $i$. Given a convex set $A$, we prove \[|A+A|\gg\frac{|A|^{14/9}}{(\log|A|)^{2/9}}.\] Sumsets of different summands and an application to a sum-product-type problem are also studied either as remarks or as theorems.
July 28, 2015
In this paper, we consider the sum-product problem of obtaining lower bounds for the size of the set $$\frac{A+A}{A+A}:=\left \{ \frac{a+b}{c+d} : a,b,c,d \in A, c+d \neq 0 \right\},$$ for an arbitrary finite set $A$ of real numbers. The main result is the bound $$\left| \frac{A+A}{A+A} \right| \gg \frac{|A|^{2+\frac{2}{25}}}{|A:A|^{\frac{1}{25}}\log |A|},$$ where $A:A$ denotes the ratio set of $A$. This improves on a result of Balog and the author (arXiv:1402.5775), provid...
April 6, 2018
We give a new proof of the discretized ring theorem for sets of real numbers. As a special case, we show that if $A\subset\mathbb{R}$ is a $(\delta,1/2)_1$-set in the sense of Katz and Tao, then either $A+A$ or $A.A$ must have measure at least $|A|^{1-\frac{1}{68}}$
October 3, 2020
We study the $\delta$-discretized sum-product estimates for well spaced sets. Our main result is: for a fixed $\alpha\in(1,\frac{3}{2}]$, we prove that for any $\sim|A|^{-1}$-separated set $A\subset[1,2]$ and $\delta=|A|^{-\alpha}$, we have: $\mathcal{N}(A+A, \delta)\cdot \mathcal{N}(AA, \delta) \gtrsim_{\epsilon}|A|\delta^{-1+\epsilon}$.
April 4, 2009
In the present paper we show that if A is a set of n real numbers, and the product set A.A has at most n^(1+c) elements, then the k-fold sumset kA has at least n^(log(k/2)/2 log 2 + 1/2 - f_k(c)) elements, where f_k(c) -> 0 as c -> 0. We believe that the methods in this paper might lead to a much stronger result; indeed, using a result of Trevor Wooley on Vinogradov's Mean Value Theorem and the Tarry-Escott Problem, we show that if |A.A| < n^(1+c), then |k(A.A)| > n^(Omega((k...
February 17, 2004
The basic theme of this paper is the fact that if $A$ is a finite set of integers, then the sum and product sets cannot both be small. A precise formulation of this fact is Conjecture 1 below due to Erd\H os-Szemer\'edi [E-S]. (see also [El], [T], and [K-T] for related aspects.) Only much weaker results or very special cases of this conjecture are presently known. One approach consists of assuming the sum set $A + A$ small and then deriving that the product set $AA$ is large ...
July 12, 2009
Let $\mathbb{F}_p$ be the field of residue classes modulo a prime number $p$ and let $A$ be a nonempty subset of $\mathbb{F}_p$. In this paper we show that if $|A|\preceq p^{0.5}$, then \[ \max\{|A\pm A|,|AA|\}\succeq|A|^{13/12};\] if $|A|\succeq p^{0.5}$, then \[ \max\{|A\pm A|,|AA|\}\succapprox \min\{|A|^{13/12}(\frac{|A|}{p^{0.5}})^{1/12},|A|(\frac{p}{|A|})^{1/11}\}.\] These results slightly improve the estimates of Bourgain-Garaev and Shen. Sum-product estimates on differ...