ID: 1803.04637

On higher energy decompositions and the sum-product phenomenon

March 13, 2018

View on ArXiv

Similar papers 3

Note on the Theorem of Balog, Szemer\'edi, and Gowers

August 20, 2023

85% Match
Christian Reiher, Tomasz Schoen
Combinatorics
Number Theory

We prove that every additive set $A$ with energy $E(A)\ge |A|^3/K$ has a subset $A'\subseteq A$ of size $|A'|\ge (1-\varepsilon)K^{-1/2}|A|$ such that $|A'-A'|\le O_\varepsilon(K^{4}|A'|)$. This is, essentially, the largest structured set one can get in the Balog-Szemer\'edi-Gowers theorem.

Find SimilarView on arXiv

On a question of A. Balog

January 29, 2015

85% Match
Ilya D. Shkredov
Combinatorics
Number Theory

We give a partial answer to a conjecture of A. Balog, concerning the size of AA+A, where A is a finite subset of real numbers. Also, we prove several new results on the cardinality of A:A+A, AA+AA and A:A + A:A.

Find SimilarView on arXiv

Discretized sum-product for large sets

January 27, 2019

85% Match
Changhao Chen
Combinatorics
Classical Analysis and ODEs

Let $A\subset [1, 2]$ be a $(\delta, \sigma)$-set with measure $|A|=\delta^{1-\sigma}$ in the sense of Katz and Tao. For $\sigma\in (1/2, 1)$ we show that $$ |A+A|+|AA|\gtrapprox \delta^{-c}|A|, $$ for $c=\frac{(1-\sigma)(2\sigma-1)}{6\sigma+4}$. This improves the bound of Guth, Katz, and Zahl for large $\sigma$.

Find SimilarView on arXiv

An improved bound on the sum-product estimate in $\mathbb{F}_{p}$

December 9, 2020

85% Match
Connor Paul Wilson
Combinatorics
Number Theory

We give an improved bound on the famed sum-product estimate in a field of residue class modulo $p$ ($\mathbb{F}_{p}$) by Erd\H{o}s and Szemeredi, and a non-empty set $A \subset \mathbb{F}_{p}$ such that: $$ \max \{|A+A|,|A A|\} \gg \min \left\{\frac{|A|^{15 / 14} \max \left\{1,|A|^{1 / 7} p^{-1 / 14}\right\}}{(\log |A|)^{2 / 7}}, \frac{|A|^{11 / 12} p^{1 / 12}}{(\log |A|)^{1 / 3}}\right\}, $$ and more importantly: $$\max \{|A+A|,|A A|\} \gg \frac{|A|^{15 / 14}}{(\log |A|)^{2 ...

Find SimilarView on arXiv

A better than $3/2$ exponent for iterated sums and products over $\mathbb R$

April 3, 2023

84% Match
Oliver Roche-Newton
Combinatorics
Number Theory

In this paper, we prove that the bound \[ \max \{ |8A-7A|,|5f(A)-4f(A)| \} \gg |A|^{\frac{3}{2} + \frac{1}{54}-o(1)} \] holds for all $A \subset \mathbb R$, and for all convex functions $f$ which satisfy an additional technical condition. This technical condition is satisfied by the logarithmic function, and this fact can be used to deduce a sum-product estimate \[ \max \{ |16A| , |A^{(16)}| \} \gg |A|^{\frac{3}{2} + c}, \] for some $c>0$. Previously, no sum-product estimate ...

Find SimilarView on arXiv

On The Energy Variant of the Sum-Product Conjecture

July 18, 2016

84% Match
Misha Rudnev, Ilya D. Shkredov, Sophie Stevens
Combinatorics
Number Theory

We prove new exponents for the energy version of the Erd\H{o}s-Szemer\'edi sum-product conjecture, raised by Balog and Wooley. They match the previously established milestone values for the standard formulation of the question, both for general fields and the special case of real or complex numbers, and appear to be the best ones attainable within the currently available technology. Further results are obtained about multiplicative energies of additive shifts and a strengthen...

Find SimilarView on arXiv
Ilya D. Shkredov
Combinatorics
Number Theory

We develop the theory of the additive dimension ${\rm dim} (A)$, i.e. the size of a maximal dissociated subset of a set $A$. It was shown that the additive dimension is closely connected with the growth of higher sumsets $nA$ of our set $A$. We apply this approach to demonstrate that for any small multiplicative subgroup $\Gamma$ the sequence $|n\Gamma|$ grows very fast. Also, we obtain a series of applications to the sum--product phenomenon and to the Balog--Wooley decomposi...

An improved bound for the size of the set $A/A+A$

October 25, 2018

84% Match
Oliver Roche-Newton
Combinatorics

It is established that for any finite set of positive real numbers $A$, we have $$|A/A+A| \gg \frac{|A|^{\frac{3}{2}+\frac{1}{26}}}{\log^{1/2}|A|}.$$

Find SimilarView on arXiv

On an application of higher energies to Sidon sets

March 26, 2021

84% Match
Ilya D. Shkredov
Number Theory
Combinatorics

We show that for any finite set $A$ and an arbitrary $\varepsilon>0$ there is $k=k(\varepsilon)$ such that the higher energy ${\mathsf{E}}_k(A)$ is at most $|A|^{k+\varepsilon}$ unless $A$ has a very specific structure. As an application we obtain that any finite subset $A$ of the real numbers or the prime field either contains an additive Sidon--type subset of size $|A|^{1/2+c}$ or a multiplicative Sidon--type subset of size $|A|^{1/2+c}$.

Find SimilarView on arXiv

A new sum-product estimate in prime fields

July 29, 2018

84% Match
Changhao Chen, Bryce Kerr, Ali Mohammadi
Combinatorics
Number Theory

In this paper we obtain a new sum-product estimate in prime fields. In particular, we show that if $A\subseteq \mathbb{F}_p$ satisfies $|A|\le p^{64/117}$ then $$ \max\{|A\pm A|, |AA|\} \gtrsim |A|^{39/32}. $$ Our argument builds on and improves some recent results of Shakan and Shkredov which use the eigenvalue method to reduce to estimating a fourth moment energy and the additive energy $E^+(P)$ of some subset $P\subseteq A+A$. Our main novelty comes from reducing the estim...

Find SimilarView on arXiv