April 24, 2018
Similar papers 2
December 13, 2024
The evolution of many dynamical systems that describe relationships or interactions between objects can be effectively modeled by temporal networks, which are typically represented as a sequence of static network snapshots. In this paper, we introduce a novel random walk based approach that can identify clusters of time-snapshots in which network community structures are stable. This allows to detect significant structural shifts over time, such as the splitting, merging, bir...
May 19, 2020
Mixture models are probabilistic models aimed at uncovering and representing latent subgroups within a population. In the realm of network data analysis, the latent subgroups of nodes are typically identified by their connectivity behaviour, with nodes behaving similarly belonging to the same community. In this context, mixture modelling is pursued through stochastic blockmodelling. We consider stochastic blockmodels and some of their variants and extensions from a mixture mo...
October 9, 2020
We propose a first-order autoregressive (i.e. AR(1)) model for dynamic network processes in which edges change over time while nodes remain unchanged. The model depicts the dynamic changes explicitly. It also facilitates simple and efficient statistical inference methods including a permutation test for diagnostic checking for the fitted network models. The proposed model can be applied to the network processes with various underlying structures but with independent edges. As...
May 19, 2022
A popular approach to model interactions is to represent them as a network with nodes being the agents and the interactions being the edges. Interactions are often timestamped, which leads to having timestamped edges. Many real-world temporal networks have a recurrent or possibly cyclic behaviour. For example, social network activity may be heightened during certain hours of day. In this paper, our main interest is to model recurrent activity in such temporal networks. As a s...
April 3, 2017
As a representation of relational data over time series, longitudinal networks provide opportunities to study link formation processes. However, networks at scale often exhibits community structure (i.e. clustering), which may confound local structural effects if it is not considered appropriately in statistical analysis. To infer the (possibly) evolving clusters and other network structures (e.g. degree distribution and/or transitivity) within each community, simultaneously,...
May 28, 2019
Interaction graphs, such as those recording emails between individuals or transactions between institutions, tend to be sparse yet structured, and often grow in an unbounded manner. Such behavior can be well-captured by structured, nonparametric edge-exchangeable graphs. However, such exchangeable models necessarily ignore temporal dynamics in the network. We propose a dynamic nonparametric model for interaction graphs that combine the sparsity of the exchangeable models with...
February 5, 2017
Latent stochastic block models are flexible statistical models that are widely used in social network analysis. In recent years, efforts have been made to extend these models to temporal dynamic networks, whereby the connections between nodes are observed at a number of different times. In this paper we extend the original stochastic block model by using a Markovian property to describe the evolution of nodes' cluster memberships over time. We recast the problem of clustering...
December 16, 2020
We study the problem of clustering nodes in a dynamic graph, where the connections between nodes and nodes' cluster memberships may change over time, e.g., due to community migration. We first propose a dynamic stochastic block model that captures these changes, and a simple decay-based clustering algorithm that clusters nodes based on weighted connections between them, where the weight decreases at a fixed rate over time. This decay rate can then be interpreted as signifying...
April 26, 2019
We discuss a variant of `blind' community detection, in which we aim to partition an unobserved network from the observation of a (dynamical) graph signal defined on the network. We consider a scenario where our observed graph signals are obtained by filtering white noise input, and the underlying network is different for every observation. In this fashion, the filtered graph signals can be interpreted as defined on a time-varying network. We model each of the underlying netw...
December 20, 2017
Dynamic networks are a general language for describing time-evolving complex systems, and discrete time network models provide an emerging statistical technique for various applications. It is a fundamental research question to detect the community structure in time-evolving networks. However, due to significant computational challenges and difficulties in modeling communities of time-evolving networks, there is little progress in the current literature to effectively find co...