June 23, 2018
Similar papers 4
January 27, 2022
Consider a $p$-random subset $A$ of initially infected vertices in the discrete cube $[L]^3$, and assume that the neighbourhood of each vertex consists of the $a_i$ nearest neighbours in the $\pm e_i$-directions for each $i \in \{1,2,3\}$, where $a_1\le a_2\le a_3$. Suppose we infect any healthy vertex $v\in [L]^3$ already having $r$ infected neighbours, and that infected sites remain infected forever. In this paper we determine $\log$ of the critical length for percolation u...
April 18, 2012
In this paper we study in complete generality the family of two-state, deterministic, monotone, local, homogeneous cellular automata in $\mathbb{Z}^d$ with random initial configurations. Formally, we are given a set $\mathcal{U}=\{X_1,\dots,X_m\}$ of finite subsets of $\mathbb{Z}^d\setminus\{\mathbf{0}\}$, and an initial set $A_0\subset\mathbb{Z}^d$ of `infected' sites, which we take to be random according to the product measure with density $p$. At time $t\in\mathbb{N}$, the...
October 21, 2004
Consider a cellular automaton with state space $\{0,1 \}^{{\mathbb Z}^2}$ where the initial configuration $\omega_0$ is chosen according to a Bernoulli product measure, 1's are stable, and 0's become 1's if they are surrounded by at least three neighboring 1's. In this paper we show that the configuration $\omega_n$ at time n converges exponentially fast to a final configuration $\bar\omega$, and that the limiting measure corresponding to $\bar\omega$ is in the universality c...
April 11, 2024
Metastability thresholds lie at the heart of bootstrap percolation theory. Yet proving precise lower bounds is notoriously hard. We show that for two of the most classical models, two-neighbour and Frob\"ose, upper bounds are sharp to essentially arbitrary precision, by linking them to their local counterparts. In Frob\"ose bootstrap percolation, iteratively, any vertex of the square lattice that is the only healthy vertex of a $1\times1$ square becomes infected and infecti...
November 22, 2013
We prove that there exist natural generalizations of the classical bootstrap percolation model on $\mathbb{Z}^2$ that have non-trivial critical probabilities, and moreover we characterize all homogeneous, local, monotone models with this property. Van Enter (in the case $d=r=2$) and Schonmann (for all $d \geq r \geq 2$) proved that $r$-neighbour bootstrap percolation models have trivial critical probabilities on $\mathbb{Z}^d$ for every choice of the parameters $d \geq r \g...
March 26, 2014
We study a new geometric bootstrap percolation model, line percolation, on the $d$-dimensional integer grid $[n]^d$. In line percolation with infection parameter $r$, infection spreads from a subset $A\subset [n]^d$ of initially infected lattice points as follows: if there exists an axis-parallel line $L$ with $r$ or more infected lattice points on it, then every lattice point of $[n]^d$ on $L$ gets infected, and we repeat this until the infection can no longer spread. The el...
March 25, 2022
In many interacting particle systems, relaxation to equilibrium is thought to occur via the growth of 'droplets', and it is a question of fundamental importance to determine the critical length at which such droplets appear. In this paper we construct a mechanism for the growth of droplets in an arbitrary finite-range monotone cellular automaton on a $d$-dimensional lattice. Our main application is an upper bound on the critical probability for percolation that is sharp up to...
September 4, 2007
We introduce a new class of two-dimensional cellular automata with a bootstrap percolation-like dynamics. Each site can be either empty or occupied by a single particle and the dynamics follows a deterministic updating rule at discrete times which allows only emptying sites. We prove that the threshold density $\rho_c$ for convergence to a completely empty configuration is non trivial, $0<\rho_c<1$, contrary to standard bootstrap percolation. Furthermore we prove that in the ...
December 16, 2010
Bootstrap percolation on the random graph $G_{n,p}$ is a process of spread of "activation" on a given realization of the graph with a given number of initially active nodes. At each step those vertices which have not been active but have at least $r\geq2$ active neighbors become active as well. We study the size $A^*$ of the final active set. The parameters of the model are, besides $r$ (fixed) and $n$ (tending to $\infty$), the size $a=a(n)$ of the initially active set and t...
October 23, 2021
Following Bradonji\'c and Saniee, we study a model of bootstrap percolation on the Gilbert random geometric graph on the $2$-dimensional torus. In this model, the expected number of vertices of the graph is $n$, and the expected degree of a vertex is $a\log n$ for some fixed $a>1$. Each vertex is added with probability $p$ to a set $A_0$ of initially infected vertices. Vertices subsequently become infected if they have at least $ \theta a \log n $ infected neighbours. Here $p...