November 6, 2018
Similar papers 3
November 5, 2003
This paper revisits the Maxwell Demon Problem. Representing the demon with a simple physical computer composed of a single memory element, we demonstrate that the average minimum entropy increase of the universe due to sorting of particles with a Maxwell Demon is eta=0.8400 for particles that are initially randomly distributed.
May 4, 2022
We argue that Maxwell's demon is incapable of creating a nonzero temperature difference. Hence, it does not destroy equilibrium and the second law is never at risk, contrary to the claim by Maxwell and accepted by many. It is therefore remarkable that despite this, the demon paradox has been a valuable source of new ideas. We use two independent arguments, one using classical equilibrium thermodynamics by extending Brillouin's approach, and the other one using equilibrium sta...
February 5, 2014
In this theoretical study, we determine the maximum amount of work extractable in finite time by a demon performing continuous measurements on a quadratic Hamiltonian system subjected to thermal fluctuations, in terms of the information extracted from the system. This is in contrast to many recent studies that focus on demons' maximizing the extracted work over received information, and operate close to equilibrium. The maximum work demon is found to apply a high-gain continu...
May 7, 2016
We study the reduction in total entropy, and associated conversion of environmental heat into work, arising from the coupling and decoupling of two systems followed by processing determined by suitable mutual feedback. The scheme is based on the actions of Maxwell's demon, namely the performance of a measurement on a system followed by an exploitation of the outcome to extract work. When this is carried out in a symmetric fashion, with each system informing the exploitation o...
December 19, 2019
Converting information into work has during the last decade gained renewed interest as it gives insight into the relation between information theory and thermodynamics. Here we theoretically investigate an implementation of Maxwell's demon in a double quantum dot and demonstrate how heat can be converted into work using only information. This is accomplished by continuously monitoring the charge state of the quantum dots and transferring electrons against a voltage bias using...
March 5, 2002
It is generally accepted, following Landauer and Bennett, that the process of measurement involves no minimum entropy cost, but the erasure of information in resetting the memory register of a computer to zero requires dissipating heat into the environment. This thesis has been challenged recently in a two-part article by Earman and Norton. I review some relevant observations in the thermodynamics of computation and argue that Earman and Norton are mistaken: there is in princ...
August 17, 2014
It is demonstrated that Maxwell's demon can be used to allow a machine to extract energy from a heat bath by use of information that is processed by the demon at a remote location. The model proposed here effectively replaces transmission of energy by transmission of information. For that we use a feedback protocol that enables a net gain by stimulating emission in selected fluctuations around thermal equilibrium. We estimate the down conversion rate and the efficiency of ene...
July 5, 2019
We consider an autonomous implementation of Maxwell's demon in a quantum dot architecture. As in the original thought experiment, only the second law of thermodynamics is seemingly violated when disregarding the demon. The autonomous architecture allows us to compare descriptions in terms of information to a more traditional, thermoelectric characterization. Our detailed investigation of information-to-work conversion is based on fluctuation relations and second law like ineq...
June 13, 2007
The information-theoretic arguments presented in a recent publication on "Quantum discord and Maxwell's demons" are discussed, and found not to address the problem specified by Maxwell. Two interrelated and definitive exorcisms of the demon, one purely thermodynamic, and the other quantum-thermodynamic are briefly discussed. For each of the two exorcisms, the demon is shown to be incapable to accomplish his assignment neither because of limitations arising from information-th...
September 15, 2020
An autonomous out of equilibrium Maxwell's demon is used to reverse the natural direction of the heat flux between two electric circuits kept at different temperatures and coupled by the electric thermal noise. The demon does not process any information, but it achieves its goal by using a frequency dependent coupling with the two reservoirs of the system. There is no energy flux between the demon and the system, but the total entropy production (system+demon) is positive. Th...