February 4, 2019
Similar papers 4
February 4, 2019
Finding communities in graphs is one of the most well-studied problems in data mining and social-network analysis. In many real applications, the underlying graph does not have a clear community structure. In those cases, selecting a single community turns out to be a fairly ill-posed problem, as the optimization criterion has to make a difficult choice between selecting a tight but small community or a more inclusive but sparser community. In order to avoid the problem of ...
August 31, 2015
Signs of hierarchy are prevalent in a wide range of systems in nature and society. One of the key problems is quantifying the importance of hierarchical organisation in the structure of the network representing the interactions or connections between the fundamental units of the studied system. Although a number of notable methods are already available, their vast majority is treating all directed acyclic graphs as already maximally hierarchical. Here we propose a hierarchy m...
June 8, 2024
Comparing directed acyclic graphs is essential in various fields such as healthcare, social media, finance, biology, and marketing. DAGs often result from contagion processes over networks, including information spreading, retweet activity, disease transmission, financial crisis propagation, malware spread, and gene mutations. For instance, in disease spreading, an infected patient can transmit the disease to contacts, making it crucial to analyze and predict scenarios. Simil...
June 23, 2022
Obtaining scalable algorithms for hierarchical agglomerative clustering (HAC) is of significant interest due to the massive size of real-world datasets. At the same time, efficiently parallelizing HAC is difficult due to the seemingly sequential nature of the algorithm. In this paper, we address this issue and present ParHAC, the first efficient parallel HAC algorithm with sublinear depth for the widely-used average-linkage function. In particular, we provide a $(1+\epsilon)$...
February 21, 2006
A new method for community identification is proposed which is founded on the analysis of successive neighborhoods, reached through hierarchical growth from a starting vertex, and on the definition of communities as a subgraph whose number of inner connections is larger than outer connections. In order to determine the precision and speed of the method, it is compared with one of the most popular community identification approaches, namely Girvan and Newman's algorithm. Altho...
September 3, 2017
We present a physically-inspired model and an efficient algorithm to infer hierarchical rankings of nodes in directed networks. It assigns real-valued ranks to nodes rather than simply ordinal ranks, and it formalizes the assumption that interactions are more likely to occur between individuals with similar ranks. It provides a natural statistical significance test for the inferred hierarchy, and it can be used to perform inference tasks such as predicting the existence or di...
May 11, 2007
Extracting understanding from the growing ``sea'' of biological and socio-economic data is one of the most pressing scientific challenges facing us. Here, we introduce and validate an unsupervised method that is able to accurately extract the hierarchical organization of complex biological, social, and technological networks. We define an ensemble of hierarchically nested random graphs, which we use to validate the method. We then apply our method to real-world networks, incl...
August 30, 2019
In this work we give a community detection algorithm in which the communities both respects the intrinsic order of a directed acyclic graph and also finds similar nodes. We take inspiration from classic similarity measures of bibliometrics, used to assess how similar two publications are, based on their relative citation patterns. We study the algorithm's performance and antichain properties in artificial models and in real networks, such as citation graphs and food webs. We ...
November 29, 2017
Hierarchical clustering is one of the most powerful solutions to the problem of clustering, on the grounds that it performs a multi scale organization of the data. In recent years, research on hierarchical clustering methods has attracted considerable interest due to the demanding modern application domains. We present a novel divisive hierarchical clustering framework called Hierarchical Stochastic Clustering (HSC), that acts in two stages. In the first stage, it finds a p...
April 17, 2009
The diameter of a graph is among its most basic parameters. Since a few years, it moreover became a key issue to compute it for massive graphs in the context of complex network analysis. However, known algorithms, including the ones producing approximate values, have too high a time and/or space complexity to be used in such cases. We propose here a new approach relying on very simple and fast algorithms that compute (upper and lower) bounds for the diameter. We show empirica...