February 5, 2019
Interactions in many real-world phenomena can be explained by a strong hierarchical structure. Typically, this structure or ranking is not known; instead we only have observed outcomes of the interactions, and the goal is to infer the hierarchy from these observations. Discovering a hierarchy in the context of directed networks can be formulated as follows: given a graph, partition vertices into levels such that, ideally, there are only edges from upper levels to lower levels. The ideal case can only happen if the graph is acyclic. Consequently, in practice we have to introduce a penalty function that penalizes edges violating the hierarchy. A practical variant for such penalty is agony, where each violating edge is penalized based on the severity of the violation. Hierarchy minimizing agony can be discovered in $O(m^2)$ time, and much faster in practice. In this paper we introduce several extensions to agony. We extend the definition for weighted graphs and allow a cardinality constraint that limits the number of levels. While, these are conceptually trivial extensions, current algorithms cannot handle them, nor they can be easily extended. We solve the problem by showing the connection to the capacitated circulation problem, and we demonstrate that we can compute the exact solution fast in practice for large datasets. We also introduce a provably fast heuristic algorithm that produces rankings with competitive scores. In addition, we show that we can compute agony in polynomial time for any convex penalty, and, to complete the picture, we show that minimizing hierarchy with any concave penalty is an NP-hard problem.
Similar papers 1
February 4, 2019
Many real-world phenomena exhibit strong hierarchical structure. Consequently, in many real-world directed social networks vertices do not play equal role. Instead, vertices form a hierarchy such that the edges appear mainly from upper levels to lower levels. Discovering hierarchies from such graphs is a challenging problem that has gained attention. Formally, given a directed graph, we want to partition vertices into levels such that ideally there are only edges from upper l...
February 5, 2019
The outcome of interactions in many real-world systems can be often explained by a hierarchy between the participants. Discovering hierarchy from a given directed network can be formulated as follows: partition vertices into levels such that, ideally, there are only forward edges, that is, edges from upper levels to lower levels. In practice, the ideal case is impossible, so instead we minimize some penalty function on the backward edges. One practical option for such a penal...
August 22, 2016
Identifying hierarchies and rankings of nodes in directed graphs is fundamental in many applications such as social network analysis, biology, economics, and finance. A recently proposed method identifies the hierarchy by finding the ordered partition of nodes which minimises a score function, termed agony. This function penalises the links violating the hierarchy in a way depending on the strength of the violation. To investigate the resolution of ranking hierarchies we intr...
September 3, 2017
We present a physically-inspired model and an efficient algorithm to infer hierarchical rankings of nodes in directed networks. It assigns real-valued ranks to nodes rather than simply ordinal ranks, and it formalizes the assumption that interactions are more likely to occur between individuals with similar ranks. It provides a natural statistical significance test for the inferred hierarchy, and it can be used to perform inference tasks such as predicting the existence or di...
February 14, 2015
Social hierarchy (i.e., pyramid structure of societies) is a fundamental concept in sociology and social network analysis. The importance of social hierarchy in a social network is that the topological structure of the social hierarchy is essential in both shaping the nature of social interactions between individuals and unfolding the structure of the social networks. The social hierarchy found in a social network can be utilized to improve the accuracy of link prediction, pr...
January 24, 2017
Social networks contain implicit knowledge that can be used to infer hierarchical relations that are not explicitly present in the available data. Interaction patterns are typically affected by users' social relations. We present an approach to inferring such information that applies a link-analysis ranking algorithm at different levels of time granularity. In addition, a voting scheme is employed for obtaining the hierarchical relations. The approach is evaluated on two data...
November 4, 2008
Networks have in recent years emerged as an invaluable tool for describing and quantifying complex systems in many branches of science. Recent studies suggest that networks often exhibit hierarchical organization, where vertices divide into groups that further subdivide into groups of groups, and so forth over multiple scales. In many cases these groups are found to correspond to known functional units, such as ecological niches in food webs, modules in biochemical networks (...
October 9, 2006
One property of networks that has received comparatively little attention is hierarchy, i.e., the property of having vertices that cluster together in groups, which then join to form groups of groups, and so forth, up through all levels of organization in the network. Here, we give a precise definition of hierarchical structure, give a generic model for generating arbitrary hierarchical structure in a random graph, and describe a statistically principled way to learn the set ...
June 5, 2020
Hierarchies permeate the structure of real networks, whose nodes can be ranked according to different features. However, networks are far from tree-like structures and the detection of hierarchical ordering remains a challenge, hindered by the small-world property and the presence of a large number of cycles, in particular clustering. Here, we use geometric representations of undirected networks to achieve an enriched interpretation of hierarchy that integrates features defin...
June 23, 2018
Several centrality measures have been formulated to quantify the notion of 'importance' of actors in social networks. Current measures scrutinize either local or global connectivity of the nodes and have been found to be inadequate for social networks. Ignoring hierarchy and community structure, which are inherent in all human social networks, is the primary cause of this inadequacy. Positional hierarchy and embeddedness of an actor in the community are intuitively crucial de...