August 22, 2016
Identifying hierarchies and rankings of nodes in directed graphs is fundamental in many applications such as social network analysis, biology, economics, and finance. A recently proposed method identifies the hierarchy by finding the ordered partition of nodes which minimises a score function, termed agony. This function penalises the links violating the hierarchy in a way depending on the strength of the violation. To investigate the resolution of ranking hierarchies we introduce an ensemble of random graphs, the Ranked Stochastic Block Model. We find that agony may fail to identify hierarchies when the structure is not strong enough and the size of the classes is small with respect to the whole network. We analytically characterise the resolution threshold and we show that an iterated version of agony can partly overcome this resolution limit.
Similar papers 1
February 4, 2019
Many real-world phenomena exhibit strong hierarchical structure. Consequently, in many real-world directed social networks vertices do not play equal role. Instead, vertices form a hierarchy such that the edges appear mainly from upper levels to lower levels. Discovering hierarchies from such graphs is a challenging problem that has gained attention. Formally, given a directed graph, we want to partition vertices into levels such that ideally there are only edges from upper l...
February 5, 2019
Interactions in many real-world phenomena can be explained by a strong hierarchical structure. Typically, this structure or ranking is not known; instead we only have observed outcomes of the interactions, and the goal is to infer the hierarchy from these observations. Discovering a hierarchy in the context of directed networks can be formulated as follows: given a graph, partition vertices into levels such that, ideally, there are only edges from upper levels to lower levels...
August 30, 2012
In recent years, the theory and application of complex networks have been quickly developing in a markable way due to the increasing amount of data from real systems and to the fruitful application of powerful methods used in statistical physics. Many important characteristics of social or biological systems can be described by the study of their underlying structure of interactions. Hierarchy is one of these features that can be formulated in the language of networks. In thi...
February 5, 2019
The outcome of interactions in many real-world systems can be often explained by a hierarchy between the participants. Discovering hierarchy from a given directed network can be formulated as follows: partition vertices into levels such that, ideally, there are only forward edges, that is, edges from upper levels to lower levels. In practice, the ideal case is impossible, so instead we minimize some penalty function on the backward edges. One practical option for such a penal...
Network clustering reveals the organization of a network or corresponding complex system with elements represented as vertices and interactions as edges in a (directed, weighted) graph. Although the notion of clustering can be somewhat loose, network clusters or groups are generally considered as nodes with enriched interactions and edges sharing common patterns. Statistical inference often treats groups as latent variables, with observed networks generated from latent group ...
March 30, 2022
We develop a method to infer community structure in directed networks where the groups are ordered in a latent one-dimensional hierarchy that determines the preferred edge direction. Our nonparametric Bayesian approach is based on a modification of the stochastic block model (SBM), which can take advantage of rank alignment and coherence to produce parsimonious descriptions of networks that combine ordered hierarchies with arbitrary mixing patterns between groups. Since our m...
September 3, 2017
We present a physically-inspired model and an efficient algorithm to infer hierarchical rankings of nodes in directed networks. It assigns real-valued ranks to nodes rather than simply ordinal ranks, and it formalizes the assumption that interactions are more likely to occur between individuals with similar ranks. It provides a natural statistical significance test for the inferred hierarchy, and it can be used to perform inference tasks such as predicting the existence or di...
Hierarchical clustering of networks consists in finding a tree of communities, such that lower levels of the hierarchy reveal finer-grained community structures. There are two main classes of algorithms tackling this problem. Divisive ($\textit{top-down}$) algorithms recursively partition the nodes into two communities, until a stopping rule indicates that no further split is needed. In contrast, agglomerative ($\textit{bottom-up}$) algorithms first identify the smallest comm...
October 9, 2006
One property of networks that has received comparatively little attention is hierarchy, i.e., the property of having vertices that cluster together in groups, which then join to form groups of groups, and so forth, up through all levels of organization in the network. Here, we give a precise definition of hierarchical structure, give a generic model for generating arbitrary hierarchical structure in a random graph, and describe a statistically principled way to learn the set ...
November 29, 2017
Hierarchical clustering is one of the most powerful solutions to the problem of clustering, on the grounds that it performs a multi scale organization of the data. In recent years, research on hierarchical clustering methods has attracted considerable interest due to the demanding modern application domains. We present a novel divisive hierarchical clustering framework called Hierarchical Stochastic Clustering (HSC), that acts in two stages. In the first stage, it finds a p...