March 31, 2019
Core-periphery structure is an emerging property of a wide range of complex systems and indicate the presence of group of actors in the system with an higher number of connections among them and a lower number of connections with a sparsely connected periphery. The dynamics of a complex system which is interacting on a given graph structure is strictly connected with the spectral properties of the graph itself, nevertheless it is generally extremely hard to obtain analytic results which will hold for arbitrary large systems. Recently a statistical ensemble of random graphs with a regular block structure, i.e. the ensemble of equitable graphs, has been introduced and analytic results have been derived in the computationally-hard context of graph partitioning and community detection. In this paper, we present a general analytic result for a ensemble of equitable core-periphery graphs, yielding a new explicit formula for the spectral density of networks with core-periphery structure.
Similar papers 1
October 9, 2016
Graph partitioning problems emerge in a wide variety of complex systems, ranging from biology to finance, but can be rigorously analyzed and solved only for a few graph ensembles. Here, an ensemble of equitable graphs, i.e. random graphs with a block-regular structure, is studied, for which analytical results can be obtained. In particular, the spectral density of this ensemble is computed exactly for a modular and bipartite structure. Kesten-McKay's law for random regular gr...
May 6, 2014
Random graph models have played a dominant role in the theoretical study of networked systems. The Poisson random graph of Erdos and Renyi, in particular, as well as the so-called configuration model, have served as the starting point for numerous calculations. In this paper we describe another large class of random graph models, which we call equitable random graphs and which are flexible enough to represent networks with diverse degree distributions and many nontrivial type...
May 23, 2019
Spectral analysis connects graph structure to the eigenvalues and eigenvectors of associated matrices. Much of spectral graph theory descends directly from spectral geometry, the study of differentiable manifolds through the spectra of associated differential operators. But the translation from spectral geometry to spectral graph theory has largely focused on results involving only a few extreme eigenvalues and their associated eigenvalues. Unlike in geometry, the study of gr...
June 6, 2005
Networks may, or may not, be wired to have a core that is both itself densely connected and central in terms of graph distance. In this study we propose a coefficient to measure if the network has such a clear-cut core-periphery dichotomy. We measure this coefficient for a number of real-world and model networks and find that different classes of networks have their characteristic values. For example do geographical networks have a strong core-periphery structure, while the c...
January 16, 2021
In network analysis, the core structure of modeling interest is usually hidden in a larger network in which most structures are not informative. The noise and bias introduced by the non-informative component in networks can obscure the salient structure and limit many network modeling procedures' effectiveness. This paper introduces a novel core-periphery model for the non-informative periphery structure of networks without imposing a specific form for the informative core st...
April 11, 2024
We derive exact equations for the spectral density of sparse networks with an arbitrary distribution of the number of single edges and triangles per node. These equations enable a systematic investigation of the effect of clustering on the spectral properties of the network adjacency matrix. In the case of heterogeneous networks, we demonstrate that the spectral density becomes more symmetric as the fluctuations in the triangle-degree sequence increase. This phenomenon is exp...
October 19, 2009
The spectral density of random graphs with topological constraints is analysed using the replica method. We consider graph ensembles featuring generalised degree-degree correlations, as well as those with a community structure. In each case an exact solution is found for the spectral density in the form of consistency equations depending on the statistical properties of the graph ensemble in question. We highlight the effect of these topological constraints on the resulting s...
February 22, 2021
Random graph models are used to describe the complex structure of real-world networks in diverse fields of knowledge. Studying their behavior and fitting properties are still critical challenges, that in general, require model specific techniques. An important line of research is to develop generic methods able to fit and select the best model among a collection. Approaches based on spectral density (i.e., distribution of the graph adjacency matrix eigenvalues) are appealing ...
June 12, 2003
We propose a general approach to the description of spectra of complex networks. For the spectra of networks with uncorrelated vertices (and a local tree-like structure), exact equations are derived. These equations are generalized to the case of networks with correlations between neighboring vertices. The tail of the density of eigenvalues $\rho(\lambda)$ at large $|\lambda|$ is related to the behavior of the vertex degree distribution $P(k)$ at large $k$. In particular, as ...
February 9, 2022
Many real-world networks are theorized to have core-periphery structure consisting of a densely-connected core and a loosely-connected periphery. While this phenomenon has been extensively studied in a range of scientific disciplines, it has not received sufficient attention in the statistics community. In this expository article, our goal is to raise awareness about this topic and encourage statisticians to address the many open inference problems in this area. To this end, ...