March 31, 2019
Similar papers 2
September 14, 2022
The spectral and localization properties of heterogeneous random graphs are determined by the resolvent distributional equations, which have so far resisted an analytic treatment. We solve analytically the resolvent equations of random graphs with an arbitrary degree distribution in the high-connectivity limit, from which we perform a thorough analysis of the impact of degree fluctuations on the spectral density, the inverse participation ratio, and the distribution of the lo...
July 14, 2022
It has been experimentally shown that communities in social networks tend to have a core-periphery topology. However, there is still a limited understanding of the precise structure of core-periphery communities in social networks including the connectivity structure and interaction rates between agents. In this paper, we use a game-theoretic approach to derive a more precise characterization of the structure of core-periphery communities.
October 19, 2017
A network with core-periphery structure consists of core nodes that are densely interconnected. In contrast to community structure, which is a different meso-scale structure of networks, core nodes can be connected to peripheral nodes and peripheral nodes are not densely interconnected. Although core-periphery structure sounds reasonable, we argue that it is merely accounted for by heterogeneous degree distributions, if one partitions a network into a single core block and a ...
August 6, 2012
We study random graphs with arbitrary distributions of expected degree and derive expressions for the spectra of their adjacency and modularity matrices. We give a complete prescription for calculating the spectra that is exact in the limit of large network size and large vertex degrees. We also study the effect on the spectra of hubs in the network, vertices of unusually high degree, and show that these produce isolated eigenvalues outside the main spectral band, akin to imp...
January 21, 2019
Complex networks or graphs are ubiquitous in sciences and engineering: biological networks, brain networks, transportation networks, social networks, and the World Wide Web, to name a few. Spectral graph theory provides a set of useful techniques and models for understanding `patterns of interconnectedness' in a graph. Our prime focus in this paper is on the following question: Is there a unified explanation and description of the fundamental spectral graph methods? There are...
September 16, 2014
Many networks can be usefully decomposed into a dense core plus an outlying, loosely-connected periphery. Here we propose an algorithm for performing such a decomposition on empirical network data using methods of statistical inference. Our method fits a generative model of core-periphery structure to observed data using a combination of an expectation--maximization algorithm for calculating the parameters of the model and a belief propagation algorithm for calculating the de...
October 21, 2018
$k$-core decomposition is widely used to identify the center of a large network, it is a pruning process in which the nodes with degrees less than $k$ are recursively removed. Although the simplicity and effectiveness of this method facilitate its implementation on broad applications across many scientific fields, it produces few analytical results. We here simplify the existing theoretical framework to a simple iterative relationship and obtain the exact analytical solutions...
October 21, 2019
We propose a statistical model for graphs with a core-periphery structure. To do this we define a precise notion of what it means for a graph to have this structure, based on the sparsity properties of the subgraphs of core and periphery nodes. We present a class of sparse graphs with such properties, and provide methods to simulate from this class, and to perform posterior inference. We demonstrate that our model can detect core-periphery structure in simulated and real-worl...
February 19, 2001
Many natural and social systems develop complex networks, that are usually modelled as random graphs. The eigenvalue spectrum of these graphs provides information about their structural properties. While the semi-circle law is known to describe the spectral density of uncorrelated random graphs, much less is known about the eigenvalues of real-world graphs, describing such complex systems as the Internet, metabolic pathways, networks of power stations, scientific collaboratio...
October 5, 2015
Two concepts of centrality have been defined in complex networks. The first considers the centrality of a node and many different metrics for it has been defined (e.g. eigenvector centrality, PageRank, non-backtracking centrality, etc). The second is related to a large scale organization of the network, the core-periphery structure, composed by a dense core plus an outlying and loosely-connected periphery. In this paper we investigate the relation between these two concepts. ...