April 18, 2019
Similar papers 2
May 27, 2024
In this work, we report the results of applying deep learning based on hybrid convolutional-recurrent and purely recurrent neural network architectures to the dataset of almost one million complete intersection Calabi-Yau four-folds (CICY4) to machine-learn their four Hodge numbers $h^{1,1}, h^{2,1}, h^{3,1}, h^{2,2}$. In particular, we explored and experimented with twelve different neural network models, nine of which are convolutional-recurrent (CNN-RNN) hybrids with the R...
December 7, 2018
We present a pedagogical introduction to the recent advances in the computational geometry, physical implications, and data science of Calabi-Yau manifolds. Aimed at the beginning research student and using Calabi-Yau spaces as an exciting play-ground, we intend to teach some mathematics to the budding physicist, some physics to the budding mathematician, and some machine-learning to both. Based on various lecture series, colloquia and seminars given by the author in the past...
August 4, 2021
We continue earlier efforts in computing the dimensions of tangent space cohomologies of Calabi-Yau manifolds using deep learning. In this paper, we consider the dataset of all Calabi-Yau four-folds constructed as complete intersections in products of projective spaces. Employing neural networks inspired by state-of-the-art computer vision architectures, we improve earlier benchmarks and demonstrate that all four non-trivial Hodge numbers can be learned at the same time using...
October 18, 2019
We apply machine learning to the problem of finding numerical Calabi-Yau metrics. Building on Donaldson's algorithm for calculating balanced metrics on K\"ahler manifolds, we combine conventional curve fitting and machine-learning techniques to numerically approximate Ricci-flat metrics. We show that machine learning is able to predict the Calabi-Yau metric and quantities associated with it, such as its determinant, having seen only a small sample of training data. Using this...
May 8, 2014
We investigate the mathematical properties of the class of Calabi-Yau four-folds recently found in [arXiv:1303.1832]. This class consists of 921,497 configuration matrices which correspond to manifolds that are described as complete intersections in products of projective spaces. For each manifold in the list, we compute the full Hodge diamond as well as additional topological invariants such as Chern classes and intersection numbers. Using this data, we conclude that there a...
February 28, 2025
In this manuscript, we demonstrate, by using several regression techniques, that one can machine learn the other independent Hodge numbers of complete intersection Calabi-Yau four-folds and five-folds in terms of $h^{1,1}$ and $h^{2,1}$. Consequently, we combine the Hodge numbers $h^{1,1}$ and $h^{2,1}$ from the complete intersection of Calabi-Yau three-folds, four-folds, and five-folds into a single dataset. We then implemented various classification algorithms on this datas...
December 9, 2021
We use the machine learning technique to search the polytope which can result in an orientifold Calabi-Yau hypersurface and the "naive Type IIB string vacua". We show that neural networks can be trained to give a high accuracy for classifying the orientifold property and vacua based on the newly generated orientifold Calabi-Yau database with $h^{1,1}(X) \leq 6$ arXiv:2111.03078. This indicates the orientifold symmetry may already be encoded in the polytope structure. In the e...
August 26, 2016
We provide a set of tools for analyzing the geometry of elliptically fibered Calabi-Yau manifolds, starting with a description of the total space rather than with a Weierstrass model or a specified type of fiber/base. Such an approach to the subject of F-theory compactification makes certain geometric properties, which are usually hidden, manifest. Specifically, we review how to isolate genus-one fibrations in such geometries and then describe how to find their sections expli...
February 15, 2022
We review briefly the characteristic topological data of Calabi--Yau threefolds and focus on the question of when two threefolds are equivalent through related topological data. This provides an interesting test case for machine learning methodology in discrete mathematics problems motivated by physics.
August 25, 2017
In this work we systematically enumerate genus one fibrations in the class of 7,890 Calabi-Yau manifolds defined as complete intersections in products of projective spaces, the so-called CICY threefolds. This survey is independent of the description of the manifolds and improves upon past approaches that probed only a particular algebraic form of the threefolds (i.e. searches for "obvious" genus one fibrations as in [1,2]). We also study K3-fibrations and nested fibration str...