July 3, 2019
Similar papers 5
March 19, 2018
Every student in statistics or data science learns early on that when the sample size largely exceeds the number of variables, fitting a logistic model produces estimates that are approximately unbiased. Every student also learns that there are formulas to predict the variability of these estimates which are used for the purpose of statistical inference; for instance, to produce p-values for testing the significance of regression coefficients. Although these formulas come fro...
March 9, 2017
The computational complexity of simultaneous inference methods in high-dimensional linear regression models quickly increases with the number variables. This paper proposes a computationally efficient method based on the Moore-Penrose pseudoinverse. Under a symmetry assumption on the available regressors, the estimators are normally distributed and accompanied by a closed-form expression for the standard errors that is free of tuning parameters. We study the numerical perform...
August 17, 2023
We analyze the dynamics of streaming stochastic gradient descent (SGD) in the high-dimensional limit when applied to generalized linear models and multi-index models (e.g. logistic regression, phase retrieval) with general data-covariance. In particular, we demonstrate a deterministic equivalent of SGD in the form of a system of ordinary differential equations that describes a wide class of statistics, such as the risk and other measures of sub-optimality. This equivalence ho...
September 8, 2008
While statistics focusses on hypothesis testing and on estimating (properties of) the true sampling distribution, in machine learning the performance of learning algorithms on future data is the primary issue. In this paper we bridge the gap with a general principle (PHI) that identifies hypotheses with best predictive performance. This includes predictive point and interval estimation, simple and composite hypothesis testing, (mixture) model selection, and others as special ...
February 26, 2014
When dealing with datasets containing a billion instances or with simulations that require a supercomputer to execute, computational resources become part of the equation. We can improve the efficiency of learning and inference by exploiting their inherent statistical nature. We propose algorithms that exploit the redundancy of data relative to a model by subsampling data-cases for every update and reasoning about the uncertainty created in this process. In the context of lea...
October 4, 2018
This paper discusses predictive inference and feature selection for generalized linear models with scarce but high-dimensional data. We argue that in many cases one can benefit from a decision theoretically justified two-stage approach: first, construct a possibly non-sparse model that predicts well, and then find a minimal subset of features that characterize the predictions. The model built in the first step is referred to as the \emph{reference model} and the operation dur...
December 15, 2012
Motivated by data-rich experiments in transcriptional regulation and sensory neuroscience, we consider the following general problem in statistical inference. When exposed to a high-dimensional signal S, a system of interest computes a representation R of that signal which is then observed through a noisy measurement M. From a large number of signals and measurements, we wish to infer the "filter" that maps S to R. However, the standard method for solving such problems, likel...
September 28, 2017
We present a novel binary convex reformulation of the sparse regression problem that constitutes a new duality perspective. We devise a new cutting plane method and provide evidence that it can solve to provable optimality the sparse regression problem for sample sizes n and number of regressors p in the 100,000s, that is two orders of magnitude better than the current state of the art, in seconds. The ability to solve the problem for very high dimensions allows us to observe...
November 23, 2023
A primary challenge facing modern scientific research is the limited availability of gold-standard data which can be both costly and labor-intensive to obtain. With the rapid development of machine learning (ML), scientists have relied on ML algorithms to predict these gold-standard outcomes with easily obtained covariates. However, these predicted outcomes are often used directly in subsequent statistical analyses, ignoring imprecision and heterogeneity introduced by the pre...
June 25, 2023
We consider the problem of heteroscedastic linear regression, where, given $n$ samples $(\mathbf{x}_i, y_i)$ from $y_i = \langle \mathbf{w}^{*}, \mathbf{x}_i \rangle + \epsilon_i \cdot \langle \mathbf{f}^{*}, \mathbf{x}_i \rangle$ with $\mathbf{x}_i \sim N(0,\mathbf{I})$, $\epsilon_i \sim N(0,1)$, we aim to estimate $\mathbf{w}^{*}$. Beyond classical applications of such models in statistics, econometrics, time series analysis etc., it is also particularly relevant in machine...