July 3, 2019
Similar papers 3
June 9, 2020
We consider the phase retrieval problem of reconstructing a $n$-dimensional real or complex signal $\mathbf{X}^{\star}$ from $m$ (possibly noisy) observations $Y_\mu = | \sum_{i=1}^n \Phi_{\mu i} X^{\star}_i/\sqrt{n}|$, for a large class of correlated real and complex random sensing matrices $\mathbf{\Phi}$, in a high-dimensional setting where $m,n\to\infty$ while $\alpha = m/n=\Theta(1)$. First, we derive sharp asymptotics for the lowest possible estimation error achievable ...
March 19, 2020
We consider the variable selection problem of generalized linear models (GLMs). Stability selection (SS) is a promising method proposed for solving this problem. Although SS provides practical variable selection criteria, it is computationally demanding because it needs to fit GLMs to many re-sampled datasets. We propose a novel approximate inference algorithm that can conduct SS without the repeated fitting. The algorithm is based on the replica method of statistical mechani...
January 19, 2022
Unlike the classical linear model, nonlinear generative models have been addressed sparsely in the literature of statistical learning. This work aims to bringing attention to these models and their secrecy potential. To this end, we invoke the replica method to derive the asymptotic normalized cross entropy in an inverse probability problem whose generative model is described by a Gaussian random field with a generic covariance function. Our derivations further demonstrate th...
January 20, 2017
We consider the estimation of a signal from the knowledge of its noisy linear random Gaussian projections. A few examples where this problem is relevant are compressed sensing, sparse superposition codes, and code division multiple access. There has been a number of works considering the mutual information for this problem using the replica method from statistical physics. Here we put these considerations on a firm rigorous basis. First, we show, using a Guerra-Toninelli type...
February 8, 2021
We theoretically analyze the typical learning performance of $\ell_{1}$-regularized linear regression ($\ell_1$-LinR) for Ising model selection using the replica method from statistical mechanics. For typical random regular graphs in the paramagnetic phase, an accurate estimate of the typical sample complexity of $\ell_1$-LinR is obtained. Remarkably, despite the model misspecification, $\ell_1$-LinR is model selection consistent with the same order of sample complexity as $\...
July 8, 2016
This paper considers the fundamental limit of compressed sensing for i.i.d. signal distributions and i.i.d. Gaussian measurement matrices. Its main contribution is a rigorous characterization of the asymptotic mutual information (MI) and minimum mean-square error (MMSE) in this setting. Under mild technical conditions, our results show that the limiting MI and MMSE are equal to the values predicted by the replica method from statistical physics. This resolves a well-known pro...
July 17, 2024
The staggering progress of machine learning in the past decade has been a sight to behold. In retrospect, it is both remarkable and unsettling that these milestones were achievable with little to no rigorous theory to guide experimentation. Despite this fact, practitioners have been able to guide their future experimentation via observations from previous large-scale empirical investigations. However, alluding to Plato's Allegory of the cave, it is likely that the observation...
June 17, 2009
The replica method is a non-rigorous but well-known technique from statistical physics used in the asymptotic analysis of large, random, nonlinear problems. This paper applies the replica method, under the assumption of replica symmetry, to study estimators that are maximum a posteriori (MAP) under a postulated prior distribution. It is shown that with random linear measurements and Gaussian noise, the replica-symmetric prediction of the asymptotic behavior of the postulated ...
April 30, 2020
Inference capabilities of machine learning (ML) systems skyrocketed in recent years, now playing a pivotal role in various aspect of society. The goal in statistical learning is to use data to obtain simple algorithms for predicting a random variable $Y$ from a correlated observation $X$. Since the dimension of $X$ is typically huge, computationally feasible solutions should summarize it into a lower-dimensional feature vector $T$, from which $Y$ is predicted. The algorithm w...
September 6, 2002
Using a variational technique, we generalize the statistical physics approach of learning from random examples to make it applicable to real data. We demonstrate the validity and relevance of our method by computing approximate estimators for generalization errors that are based on training data alone.