July 6, 2019
Similar papers 3
April 8, 2013
Given the constant rise in quantity and quality of data obtained from neural systems on many scales ranging from molecular to systems', information-theoretic analyses became increasingly necessary during the past few decades in the neurosciences. Such analyses can provide deep insights into the functionality of such systems, as well as a rigid mathematical theory and quantitative measures of information processing in both healthy and diseased states of neural systems. This ch...
May 5, 2004
This article introduces the physics of information in the context of molecular biology and genomics. Entropy and information, the two central concepts of Shannon's theory of information and communication, are often confused with each other but play transparent roles when applied to statistical ensembles (i.e., identically prepared sets) of symbolic sequences. Such an approach can distinguish between entropy and information in genes, predict the secondary structure of ribozyme...
June 29, 2017
In the past three decades, many theoretical measures of complexity have been proposed to help understand complex systems. In this work, for the first time, we place these measures on a level playing field, to explore the qualitative similarities and differences between them, and their shortcomings. Specifically, using the Boltzmann machine architecture (a fully connected recurrent neural network) with uniformly distributed weights as our model of study, we numerically measure...
February 7, 2023
Strongly interacting systems can be described in terms of correlation functions at various orders. A quantum analog of high-order correlations is the topological entanglement in topologically ordered states of matter at zero temperature, usually quantified by topological entanglement entropy (TEE). In this work, we propose a statistical interpretation that unifies the two under the same information-theoretic framework. We demonstrate that the existence of a non-zero TEE can b...
November 3, 2010
In a genetic algorithm, fluctuations of the entropy of a genome over time are interpreted as fluctuations of the information that the genome's organism is storing about its environment, being this reflected in more complex organisms. The computation of this entropy presents technical problems due to the small population sizes used in practice. In this work we propose and test an alternative way of measuring the entropy variation in a population by means of algorithmic informa...
January 30, 2013
Recent experimental advances in neuroscience have opened new vistas into the immense complexity of neuronal networks. This proliferation of data challenges us on two parallel fronts. First, how can we form adequate theoretical frameworks for understanding how dynamical network processes cooperate across widely disparate spatiotemporal scales to solve important computational problems? And second, how can we extract meaningful models of neuronal systems from high dimensional da...
June 3, 2019
Humans communicate using systems of interconnected stimuli or concepts -- from language and music to literature and science -- yet it remains unclear how, if at all, the structure of these networks supports the communication of information. Although information theory provides tools to quantify the information produced by a system, traditional metrics do not account for the inefficient ways that humans process this information. Here we develop an analytical framework to study...
January 21, 2011
Genetic regulatory networks enable cells to respond to the changes in internal and external conditions by dynamically coordinating their gene expression profiles. Our ability to make quantitative measurements in these biochemical circuits has deepened our understanding of what kinds of computations genetic regulatory networks can perform and with what reliability. These advances have motivated researchers to look for connections between the architecture and function of geneti...
June 30, 2021
In this PhD thesis, we explore and apply methods inspired by the free energy principle to two important areas in machine learning and neuroscience. The free energy principle is a general mathematical theory of the necessary information-theoretic behaviours of systems that maintain a separation from their environment. A core postulate of the theory is that complex systems can be seen as performing variational Bayesian inference and minimizing an information-theoretic quantity ...
August 2, 2009
In the postgenome era many efforts have been dedicated to systematically elucidate the complex web of interacting genes and proteins. These efforts include experimental and computational methods. Microarray technology offers an opportunity for monitoring gene expression level at the genome scale. By recourse to information theory, this study proposes a mathematical approach to reconstruct gene regulatory networks at coarse-grain level from high throughput gene expression data...