July 22, 2019
Similar papers 5
February 12, 2000
We present an inductive algebraic approach to the systematic construction and classification of generalized Calabi-Yau (CY) manifolds in different numbers of complex dimensions, based on Batyrev's formulation of CY manifolds as toric varieties in weighted complex projective spaces associated with reflexive polyhedra. We show how the allowed weight vectors in lower dimensions may be extended to higher dimensions, emphasizing the roles of projection and intersection in their du...
May 20, 2005
In this paper, we compute the integral cohomology groups for all examples of Calabi-Yau 3-folds obtained from hypersurfaces in 4-dimensional Gorenstein toric Fano varieties. Among 473 800 776 families of Calabi-Yau 3-folds $X$ corresponding to 4-dimensional reflexive polytopes there exist exactly 32 families having non-trivial torsion in $H^*(X, \Z)$. We came to an interesting observation that the torsion subgroups in $H^2$ and $H^3$ are exchanged by the mirror symmetry invol...
December 2, 2015
We explore the distribution of topological numbers in Calabi-Yau manifolds, using the Kreuzer-Skarke dataset of hypersurfaces in toric varieties as a testing ground. While the Hodge numbers are well-known to exhibit mirror symmetry, patterns in frequencies of combination thereof exhibit striking new patterns. We find pseudo-Voigt and Planckian distributions with high confidence and exact fit for many substructures. The patterns indicate typicality within the landscape of Cala...
April 11, 2017
We study various geometrical quantities for Calabi-Yau varieties realized as cones over Gorenstein Fano varieties, obtained as toric varieties from reflexive polytopes in various dimensions. Focus is made on reflexive polytopes up to dimension 4 and the minimized volumes of the Sasaki-Einstein base of the corresponding Calabi-Yau cone are calculated. By doing so, we conjecture new bounds for the Sasaki-Einstein volume with respect to various topological quantities of the corr...
August 4, 2020
We study Calabi-Yau threefolds with large Hodge numbers by constructing and counting triangulations of reflexive polytopes. By counting points in the associated secondary polytopes, we show that the number of fine, regular, star triangulations of polytopes in the Kreuzer-Skarke list is bounded above by $\binom{14,111}{494} \approx 10^{928}$. Adapting a result of Anclin on triangulations of lattice polygons, we obtain a bound on the number of triangulations of each 2-face of e...
September 20, 2001
We propose a way to examine N=1 and N=2 string dualities on Calabi-Yau three-folds or extensions. Our way is to find out or to construct two types of toric representations of a Calabi-Yau three-fold, which contain phases topologically equivalent or phases connected by flops. We discuss how to find relations among Calabi-Yau three-folds realized in different toric representations. We examine several examples of Calabi-Yau three-folds which have the Hodge numbers, $(h^{1,1},h^{...
June 12, 2011
We derive the combinatorial representations of Picard group and deformation space of anti-canonical hypersurfaces of a toric variety using techniques in toric geometry. The mirror cohomology correspondence in the context of mirror symmetry is established for a pair of Calabi-Yau (CY) ${\sf n}$-spaces in toric varieties defined by reflexive polytopes for an arbitrary dimension ${\sf n}$. We further identify the Kahler cone of the toric variety and degeneration cone of CY hyper...
July 6, 2000
In this paper we give a construction of Lagrangian torus fibration for Calabi-Yau hypersurface in toric variety via the method of gradient flow. Using our construction of Lagrangian torus fibration, we are able to prove the symplectic topological version of SYZ mirror conjecture for generic Calabi-Yau hypersurface in toric variety. We will also be able to give precise formulation of SYZ mirror conjecture in general (including singular locus and duality of singular fibres).
December 1, 1995
We show that the moduli space of all Calabi-Yau manifolds that can be realized as hypersurfaces described by a transverse polynomial in a four dimensional weighted projective space, is connected. This is achieved by exploiting techniques of toric geometry and the construction of Batyrev that relate Calabi-Yau manifolds to reflexive polyhedra. Taken together with the previously known fact that the moduli space of all CICY's is connected, and is moreover connected to the moduli...
March 10, 2003
In this paper we start the program of constructing generalized special Lagrangian torus fibrations for Calabi-Yau hypersurfaces in toric variety near the large complex limit, with respect to the restriction of a toric metric on the toric variety to the Calabi-Yau hypersurface. The construction is based on the deformation of the standard toric generalized special Lagrangian torus fibration of the large complex limit $X_0$. In this paper, we will deal with the region near the s...