July 26, 2019
Similar papers 4
March 2, 2023
The concept of topological energy bands and their manifestations have been demonstrated in condensed matter systems as a fantastic paradigm toward unprecedented physical phenomena and properties that are robust against disorders. Recent years, this paradigm was extended to phononic metamaterials (including mechanical and acoustic metamaterials), giving rise to the discovery of remarkable phenomena that were not observed elsewhere thanks to the extraordinary controllability an...
October 1, 2020
Active matter encompasses different nonequilibrium systems in which individual constituents convert energy into non-conservative forces or motion at the microscale. This review provides an elementary introduction to the role of topology in active matter through experimentally relevant examples. Here, the focus lies on topological defects and topologically protected edge modes with an emphasis on the distinctive properties they acquire in active media. These paradigmatic examp...
January 4, 2024
The study of topological states in electronic structures, which allows robust transport properties against impurities and defects, has been recently extended to the realm of elasticity. This work shows that nontrivial topological flexural edge states located on the free boundary of the elastic graphene-like metamaterial can be realized without breaking the time reversal, mirror, or inversion symmetry of the system. Numerical calculations and experimental studies demonstrate t...
May 21, 2018
Recently, the search for topological states of matter has turned to non-Hermitian systems, which exhibit a rich variety of unique properties without Hermitian counterparts. Lattices modeled through non-Hermitian Hamiltonians appear in the context of photonic systems, where one needs to account for gain and loss, circuits of resonators, and also when modeling the lifetime due to interactions in condensed matter systems. Here we provide a brief overview of this rapidly growing ...
February 8, 2021
Hydrodynamics is shown to induce non-Hermitian topological phenomena in ordinary, passive soft matter. This is demonstrated for the first time by subjecting a 2D elastic lattice to a low-Reynolds viscous flow. The interplay of hydrodynamics and elasticity splits Dirac cones into bulk Fermi arcs, pairing exceptional points with opposite half-integer topological charges. The bulk Fermi arc is a generic hallmark of the system exhibited in all lattice and flow symmetries. Analyti...
December 1, 2016
Mechanical metamaterials are those structures designed to convey force and motion in novel and desirable ways. Recently, Kane and Lubensky showed that lattices at the point of marginal mechanical stability (Maxwell lattices) possess a topological invariant that describes the distribution of floppy, zero-energy edge modes. Here, we show that applying force at a point in the bulk of these lattices generates a directional mechanical response, in which stress or strain is induced...
June 12, 2014
Mechanical metamaterials are artificial structures with unusual properties, such as negative Poisson ratio, bistability or tunable vibrational properties, that originate in the geometry of their unit cell. At the heart of such unusual behaviour is often a soft mode: a motion that does not significantly stretch or compress the links between constituent elements. When activated by motors or external fields, soft modes become the building blocks of robots and smart materials. He...
October 31, 2016
Guiding energy deliberately is one of the central elements in engineering and information processing. It is often achieved by designing specific transport channels in a suitable material. Topological metamaterials offer a way to construct stable and efficient channels of unprecedented versatility. However, due to their stability it can be tricky to terminate them or to temporarily shut them off without changing the material properties massively. While a lot of effort was put ...
July 12, 2022
Concepts from quantum topological states of matter have been extensively utilized in the past decade in creating mechanical metamaterials with topologically protected features, such as one-way edge states and topologically polarized elasticity. Maxwell lattices represent a class of topological mechanical metamaterials that exhibit distinct robust mechanical properties at edges/interfaces when they are topologically polarized. Realizing topological phase transitions in these m...
March 2, 2018
Topological metamaterials have invaded the mechanical world, demonstrating acoustic cloaking and waveguiding at finite frequencies and variable, tunable elastic response at zero frequency. Zero frequency topological states have previously relied on the Maxwell condition, namely that the system has equal numbers of degrees of freedom and constraints. Here, we show that otherwise rigid periodic mechanical structures are described by a map with a nontrivial topological degree (a...