July 26, 2019
Similar papers 5
July 10, 2015
Topological states of quantum matter exhibit unique disorder-immune surface states protected by underlying nontrivial topological invariants of the bulk. Such immunity from backscattering makes topological surface or edge states ideal carriers for both classical and quantum information. So far, topological matters have been explored only in the realms of electronics and photonics, with limited range of bulk properties and largely immutable materials. These constraints thus im...
May 18, 2019
Non-Hermiticity can vary the topology of system, induce topological phase transition, and even invalidate the conventional bulk-boundary correspondence. Here, we show the introducing of non-Hermiticity without affecting the topological properties of the original chiral symmetric Hermitian systems. Conventional bulk-boundary correspondence holds, topological phase transition and the (non)existence of edge states are unchanged even though the energy bands are inseparable due to...
October 28, 2018
Higher-order phases are characterized by corner or hinge modes that arise due to the interesting interplay of localization mechanisms along two or more dimensions. In this work, we introduce and construct a novel class of "hybrid" higher-order skin-topological boundary modes in non-reciprocal systems with two or more open boundaries. Their existence crucially relies on non-reciprocal pumping in addition to topological localization. Unlike usual non-Hermitian "skin" modes, the...
December 30, 2021
Elastic wave manipulation is important in a wide variety of scales in applications including information processing in tiny elastic devices and noise control in big solid structures. The recent emergence of topological materials opens a new avenue toward modulating elastic waves in solids. However, because of the full-vector feature, and the complicated couplings of the longitudinal and transverse components of elastic waves, manipulating elastic waves is generally difficult,...
August 15, 2019
Recent progress in topological mechanics have revealed a family of Maxwell lattices that exhibit topologically protected floppy edge modes. These modes lead to a strongly asymmetric elastic wave response. In this paper, we show how topological Maxwell lattices can be used to realize non-reciprocal transmission of elastic waves. Our design leverages the asymmetry associated with the availability of topological floppy edge modes and the geometric nonlinearity built in the mecha...
June 24, 2022
Mechanical vibrations are being harnessed for a variety of purposes and at many length scales, from the macroscopic world down to the nanoscale. The considerable design freedom in mechanical structures allows to engineer new functionalities. In recent years, this has been exploited to generate setups that offer topologically protected transport of vibrational waves, both in the solid state and in fluids. Borrowing concepts from electronic physics and being cross-fertilized by...
September 13, 2023
The finding of non-Hermitian skin effect has revolutionized our understanding of non-Hermitian topological phases, where the usual bulk-boundary correspondence is broken and new topological phases specific to non-Hermitian system are uncovered. Hybrid skin-topological effect (HSTE) is a class of newly discovered non-Hermitian topological states that simultaneously supports skin-localized topological edge states and extended bulk states. Here we provide a brief review of HSTE,...
August 12, 2020
In the past decades, topological concepts have emerged to classify matter states beyond the Ginzburg-Landau symmetry breaking paradigm. The underlying global invariants are usually characterized by integers, such as Chern or winding numbers. Very recently, band topology characterized by non-Abelian topological charges has been proposed, which possess non-commutative and fruitful braiding structures with multiple (>1) bandgaps entangled together. Despite many potential exquisi...
July 2, 2018
Topological systems are inherently robust to disorder and continuous perturbations, resulting in dissipation-free edge transport of electrons in quantum solids, or reflectionless guiding of photons and phonons in classical wave systems characterized by Chern or spin-Chern topological invariants. These established examples of topological physics, however, do not exhaust all possible topological phases, and recently a new class of topological metamaterials characterized by bulk...
December 21, 2018
Non-Hermitian Hamiltonians, which describe a wide range of dissipative systems, and higher-order topological phases, which exhibit novel boundary states on corners and hinges, comprise two areas of intense current research. Here we investigate systems where these frontiers merge and formulate a generalized biorthogonal bulk-boundary correspondence, which dictates the appearance of boundary modes at parameter values that are, in general, radically different from those that mar...