October 12, 2019
Similar papers 3
November 26, 1996
Let X be a subvariety of $P^n$ defined by equations of degrees $ d =(d_1,...,d_s)$, over an algebraically closed field k of any characteristic. We study properties of the Fano scheme $F_r(X)$ that parametrizes linear subspaces of dimension r contained in X. We prove that $F_r(X)$ is connected and smooth of the expected dimension for n big enough (this was previously known in characteristic 0 or for r=1). Using Bott's theorem, we prove a vanishing theorem for certain bundles o...
February 10, 2017
This article is based on a series of lectures on toric varieties given at RIMS, Kyoto. We start by introducing toric varieties, their basic properties and later pass to more advanced topics relating mostly to combinatorics.
February 11, 2020
A Fano problem is an enumerative problem of counting $r$-dimensional linear subspaces on a complete intersection in $\mathbb{P}^n$ over a field of arbitrary characteristic, whenever the corresponding Fano scheme is finite. A classical example is enumerating lines on a cubic surface. We study the monodromy of finite Fano schemes $F_{r}(X)$ as the complete intersection $X$ varies. We prove that the monodromy group is either symmetric or alternating in most cases. In the excepti...
April 29, 2014
We prove birational boundedness results on complete intersections with trivial canonical class of base point free divisors in (some version of) Fano varieties. Our results imply in particular that Batyrev-Borisov toric construction produces only a bounded set of Hodge numbers in any given dimension, even as the codimension is allowed to grow.
June 19, 2018
Let $X \subset Y$ be closed (possibly singular) subschemes of a smooth projective toric variety $T$. We show how to compute the Segre class $s(X,Y)$ as a class in the Chow group of $T$. Building on this, we give effective methods to compute intersection products in projective varieties, to determine algebraic multiplicity without working in local rings, and to test pairwise containment of subvarieties of $T$. Our methods may be implemented without using Groebner bases; in par...
January 22, 1998
In this paper we explain the complete biregular classification of all 4-dimensional smooth toric Fano varieties. The main result states that there exist exactly 123 different types of toric Fano 4-folds up to isomorphism.
December 30, 1997
For an arbitrary smooth n-dimensional Fano variety $X$ we introduce the notion of a small toric degeneration. Using small toric degenerations of Fano n-folds $X$, we propose a general method for constructing mirrors of Calabi-Yau complete intersections in $X$. Our mirror construction is based on a generalized monomial-divisor mirror correspondence which can be used for computing Gromov-Witten invariants of rational curves via specializations of GKZ-hypergeometric series.
February 28, 2015
We prove that the derived category of a smooth complete intersection variety is equivalent to a full subcategory of the derived category of a smooth projective Fano variety. This enables us to define some new invariants of smooth projective varieties and raise many interesting questions.
May 24, 2004
We investigate Gorenstein toric Fano varieties by combinatorial methods using the notion of a reflexive polytope which appeared in connection to mirror symmetry. The paper contains generalisations of tools and previously known results for nonsingular toric Fano varieties. As applications we obtain new classification results, bounds of invariants and formulate conjectures concerning combinatorial and geometrical properties of reflexive polytopes.
August 8, 2002
These notes survey some basic results in toric varieties over a field with examples and applications. A computer algebra package (written by the second author) is described which deals with both affine and projective toric varieties in any number of dimensions (written in both the software packages MAGMA and GAP). Among other things, the package implements a desingularization procedure for affine toric varieties, constructs some error-correcting codes associated with toric ...