ID: 1910.08605

Machine learning Calabi-Yau metrics

October 18, 2019

View on ArXiv

Similar papers 2

Learning Size and Shape of Calabi-Yau Spaces

November 2, 2021

89% Match
Magdalena Larfors, Andre Lukas, ... , Schneider Robin
Machine Learning

We present a new machine learning library for computing metrics of string compactification spaces. We benchmark the performance on Monte-Carlo sampled integrals against previous numerical approximations and find that our neural networks are more sample- and computation-efficient. We are the first to provide the possibility to compute these metrics for arbitrary, user-specified shape and size parameters of the compact space and observe a linear relation between optimization of...

Find SimilarView on arXiv

Numerical Metrics, Curvature Expansions and Calabi-Yau Manifolds

December 23, 2019

88% Match
Wei Cui, James Gray
High Energy Physics - Theory

We discuss the extent to which numerical techniques for computing approximations to Ricci-flat metrics can be used to investigate hierarchies of curvature scales on Calabi-Yau manifolds. Control of such hierarchies is integral to the validity of curvature expansions in string effective theories. Nevertheless, for seemingly generic points in moduli space it can be difficult to analytically determine if there might be a highly curved region localized somewhere on the Calabi-Yau...

Find SimilarView on arXiv

Machine learning for complete intersection Calabi-Yau manifolds: a methodological study

July 30, 2020

88% Match
Harold Erbin, Riccardo Finotello
Machine Learning
Algebraic Geometry

We revisit the question of predicting both Hodge numbers $h^{1,1}$ and $h^{2,1}$ of complete intersection Calabi-Yau (CICY) 3-folds using machine learning (ML), considering both the old and new datasets built respectively by Candelas-Dale-Lutken-Schimmrigk / Green-H\"ubsch-Lutken and by Anderson-Gao-Gray-Lee. In real world applications, implementing a ML system rarely reduces to feed the brute data to the algorithm. Instead, the typical workflow starts with an exploratory dat...

Find SimilarView on arXiv

Deep learning complete intersection Calabi-Yau manifolds

November 20, 2023

88% Match
Harold Erbin, Riccardo Finotello
Machine Learning
Algebraic Geometry

We review advancements in deep learning techniques for complete intersection Calabi-Yau (CICY) 3- and 4-folds, with the aim of understanding better how to handle algebraic topological data with machine learning. We first discuss methodological aspects and data analysis, before describing neural networks architectures. Then, we describe the state-of-the art accuracy in predicting Hodge numbers. We include new results on extrapolating predictions from low to high Hodge numbers,...

Find SimilarView on arXiv

On Machine Learning Complete Intersection Calabi-Yau 3-folds

April 17, 2024

87% Match
Kaniba Mady Keita
High Energy Physics - Theory

Gaussian Process Regression, Kernel Support Vector Regression, the random forest, extreme gradient boosting and the generalized linear model algorithms are applied to data of Complete Intersection Calabi-Yau 3-folds. It is shown that Gaussian process regression is the most suitable for learning the Hodge number h^(2,1)in terms of h^(1,1). The performance of this regression algorithm is such that the Pearson correlation coefficient for the validation set is R^2 = 0.9999999995 ...

Find SimilarView on arXiv

Machine Learning Calabi-Yau Four-folds

September 5, 2020

87% Match
Yang-Hui He, Andre Lukas
Algebraic Geometry
Machine Learning

Hodge numbers of Calabi-Yau manifolds depend non-trivially on the underlying manifold data and they present an interesting challenge for machine learning. In this letter we consider the data set of complete intersection Calabi-Yau four-folds, a set of about 900,000 topological types, and study supervised learning of the Hodge numbers h^1,1 and h^3,1 for these manifolds. We find that h^1,1 can be successfully learned (to 96% precision) by fully connected classifier and regress...

Find SimilarView on arXiv

Machine Learning on generalized Complete Intersection Calabi-Yau Manifolds

September 21, 2022

87% Match
Wei Cui, Xin Gao, Juntao Wang
Machine Learning

Generalized Complete Intersection Calabi-Yau Manifold (gCICY) is a new construction of Calabi-Yau manifolds established recently. However, the generation of new gCICYs using standard algebraic method is very laborious. Due to this complexity, the number of gCICYs and their classification still remain unknown. In this paper, we try to make some progress in this direction using neural network. The results showed that our trained models can have a high precision on the existing ...

Find SimilarView on arXiv

Getting CICY High

March 7, 2019

87% Match
Kieran Bull, Yang-Hui He, ... , Mishra Challenger
High Energy Physics - Theory

Supervised machine learning can be used to predict properties of string geometries with previously unknown features. Using the complete intersection Calabi-Yau (CICY) threefold dataset as a theoretical laboratory for this investigation, we use low $h^{1,1}$ geometries for training and validate on geometries with large $h^{1,1}$. Neural networks and Support Vector Machines successfully predict trends in the number of K\"ahler parameters of CICY threefolds. The numerical accura...

Find SimilarView on arXiv
Anthony Ashmore, Rehan Deen, ... , Ovrut Burt A.
High Energy Physics - Theory

We study the use of machine learning for finding numerical hermitian Yang-Mills connections on line bundles over Calabi-Yau manifolds. Defining an appropriate loss function and focusing on the examples of an elliptic curve, a K3 surface and a quintic threefold, we show that neural networks can be trained to give a close approximation to hermitian Yang-Mills connections.

Distinguishing Elliptic Fibrations with AI

April 18, 2019

87% Match
Yang-Hui He, Seung-Joo Lee
Algebraic Geometry

We use the latest techniques in machine-learning to study whether from the landscape of Calabi-Yau manifolds one can distinguish elliptically fibred ones. Using the dataset of complete intersections in products of projective spaces (CICY3 and CICY4, totalling about a million manifolds) as a concrete playground, we find that a relatively simple neural network with forward-feeding multi-layers can very efficiently distinguish the elliptic fibrations, much more so than using the...

Find SimilarView on arXiv