November 4, 2019
Similar papers 5
December 7, 2018
We consider the problem of estimating the location of a single change point in a dynamic stochastic block model. We propose two methods of estimating the change point, together with the model parameters. The first employs a least squares criterion function and takes into consideration the full structure of the stochastic block model and is evaluated at each point in time. Hence, as an intermediate step, it requires estimating the community structure based on a clustering algo...
October 10, 2017
The latent stochastic block model is a flexible and widely used statistical model for the analysis of network data. Extensions of this model to a dynamic context often fail to capture the persistence of edges in contiguous network snapshots. The recently introduced stochastic block transition model addresses precisely this issue, by modelling the probabilities of creating a new edge and of maintaining an edge over time. Using a model-based clustering approach, this paper illu...
July 4, 2020
In network inference applications, it is often desirable to detect community structure, namely to cluster vertices into groups, or blocks, according to some measure of similarity. Beyond mere adjacency matrices, many real networks also involve vertex covariates that carry key information about underlying block structure in graphs. To assess the effects of such covariates on block recovery, we present a comparative analysis of two model-based spectral algorithms for clustering...
April 9, 2020
We introduce the Markov Stochastic Block Model (MSBM): a growth model for community based networks where node attributes are assigned through a Markovian dynamic. We rely on HMMs' literature to design prediction methods that are robust to local clustering errors. We focus specifically on the link prediction and collaborative filtering problems and we introduce a new model selection procedure to infer the number of hidden clusters in the network. Our approaches for reliable pr...
April 18, 2019
Community detection is a discovery tool used by network scientists to analyze the structure of real-world networks. It seeks to identify natural divisions that may exist in the input networks that partition the vertices into coherent modules (or communities). While this problem space is rich with efficient algorithms and software, most of this literature caters to the static use-case where the underlying network does not change. However, many emerging real-world use-cases giv...
June 3, 2009
The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of the same cluster and comparatively few edges joining vertices of different clusters. Such clusters, or communities, can be considered as fairly independent compartments of a graph, p...
April 24, 2018
Although the computational and statistical trade-off for modeling single graphs, for instance, using block models is relatively well understood, extending such results to sequences of graphs has proven to be difficult. In this work, we take a step in this direction by proposing two models for graph sequences that capture: (a) link persistence between nodes across time, and (b) community persistence of each node across time. In the first model, we assume that the latent commun...
September 9, 2016
Most real-world social networks are inherently dynamic, composed of communities that are constantly changing in membership. To track these evolving communities, we need dynamic community detection techniques. This article evaluates the performance of a set of game theoretic approaches for identifying communities in dynamic networks. Our method, D-GT (Dynamic Game Theoretic community detection), models each network node as a rational agent who periodically plays a community me...
April 6, 2019
Spectral embedding of adjacency or Laplacian matrices of undirected graphs is a common technique for representing a network in a lower dimensional latent space, with optimal theoretical guarantees. The embedding can be used to estimate the community structure of the network, with strong consistency results in the stochastic blockmodel framework. One of the main practical limitations of standard algorithms for community detection from spectral embeddings is that the number of ...
We study the inference of a model of dynamic networks in which both communities and links keep memory of previous network states. By considering maximum likelihood inference from single snapshot observations of the network, we show that link persistence makes the inference of communities harder, decreasing the detectability threshold, while community persistence tends to make it easier. We analytically show that communities inferred from single network snapshot can share a ma...