November 18, 2019
Similar papers 3
January 24, 2019
We study the effect of electron doping on the bonding character and stability of two-dimensional (2D) structures of elemental boron, called borophene, which is known to form many stable allotropes. Our {\em ab initio} calculations for the neutral system reveal previously unknown stable 2D $\epsilon$-B and $\omega$-B structures. We find that the chemical bonding characteristic in this and other boron structures is strongly affected by extra charge. Beyond a critical degree of ...
July 4, 2013
The discovery of superconductivity in Magnesium Diborate (MgB$_2$) has stimulated great interest in the search of new superconductors with similar lattice structures. Unlike cuprate or iron-based superconductors, MgB$_2$ is indisputably a phonon-mediated high temperature superconductor. The emergence of high temperature superconductivity in this material results from the strong coupling between the boron $\sigma$-bonding electrons around the Fermi level and the bond-stretchin...
May 30, 2017
By way of the nonequilibrium Green's function simulations and first principles calculations, we report that borophene, a single layer of boron atoms that was fabricated recently, possesses an extraordinarily high lattice thermal conductance in the ballistic transport regime, which even exceeds graphene. In addition to the obvious reasons of light mass and strong bonding of boron atoms, the superior thermal conductance is mainly rooted in its strong structural anisotropy and u...
December 26, 2016
The enchanting Dirac fermions in graphene stimulated us to seek for other two-dimensional (2D) Dirac materials, and boron monolayers may be a good candidate. So far, a number of monolayer boron sheets have been theoretically predicted, and three have been experimentally prepared. However, none of them possesses Dirac electrons. Herein, by means of density functional theory (DFT) computations, we identified a new boron monolayer, namely hr-sB, with two types of Dirac fermions ...
May 16, 2022
The recently synthesized hydrogen boride monolayer in the Cmmm phase is a promising super-conductor due to its similarity to MgB2 and the large hydrogen content in its structure. Making use of first-principles calculations based on density functional theory, we study its electronic, vibrational,and superconducting properties and conclude that, despite the expectations, hydrogen boride does not have a sizable superconducting critical temperature. The presence of hydrogen in th...
July 3, 2021
Borophene has triggered a surge of interest due to its outstanding properties including mechanical flexibility, polymorphism, and opto-electrical anisotropy. Very recently, a novel semi-hydrogenated borophene, called $\alpha'$-4H, was synthesized in large-scale freestanding samples, which exhibits excellent air-stability and semiconducting nature. Herein, using the density functional theory (DFT) and many-body perturbation theory (MBPT), we investigate the electronic and exci...
July 12, 2019
We performed a theoretical investigation of the structural and electronic properties of (i) pristine, and (ii) superlattice structures of borophene. In (i), by combining first-principles calculations, based on the density functional theory (DFT), and simulations of the X-ray Absorption Near-Edge Structure (XANES) we present a comprehensive picture connecting the atomic arrangement of borophene and the X-ray absorption spectra. Once we have characterized the electronic propert...
March 15, 2018
We report first principle calculations of electronic and mechanical properties of few-layer borophene with the inclusion of interlayer van der Waals (vdW) interaction. The anisotropic metallic behaviors are preserved from monolayer to few-layer structures. The energy splitting of bilayer borophene at $\Gamma$ point near the Fermi level is about 1.7 eV, much larger than the values (0.5--1 eV) of other layered semiconductors, indicating much stronger vdW interactions in metalli...
April 10, 2020
We investigated the possibility of superconductivity in monolayer hexagonal boron nitride (h-BN) doped using each group-1 (Li, Na, K) and group-2 (Be, Mg, Ca, Sr, Ba) atom via ab-initio calculations. Consequently, we reveal that Sr- and Ba-doped monolayer h-BN and Ca-doped monolayer h-BN with 3.5% tensile strain are energetically stable and become superconductors with Tc values of 5.83 K, 1.53 K, and 12.8 K, respectively, which are considerably higher than those of Ca-, Sr-, ...
September 14, 2023
Two dimensional materials are attracting new research for optoelectronics and spintronics due to their unique physical properties. A wide range of emerging spintronic devices are achieved from parent and doped two dimensional materials. First-principles electronic structure calculations of a two-dimensional monolayer of borophene in its P6/mmm form is explored in this study. The electronic, magnetic, and optical properties of doped borophene are analyzed for doping with lithi...