November 18, 2019
Similar papers 5
October 21, 2023
Metal borides have been considered as potential high-temperature superconductors since the discovery of record-holding 39 K superconductivity in bulk MgB2. In this work, we identified a superconducting yet thermodynamically stable F43m Sr2B5 at 40 GPa with a unique covalent sp3-hybridized boron framework through extensive first-principles structure searches. Remarkably, solving the anisotropic Migdal-Eliashberg equations resulted in a high superconducting critical temperature...
November 7, 2012
A novel crystalline structure of hybrid monolayer hexagonal boron nitride (BN) and graphene is predicted by means of the first-principles calculations. This material can be derived via boron or nitrogen atoms substituted by carbon atoms evenly in the graphitic BN with vacancies. The corresponding structure is constructed from a BN hexagonal ring linking an additional carbon atom. The unit cell is composed of 7 atoms, 3 of which are boron atoms, 3 are nitrogen atoms, and one i...
June 22, 2020
Combining crystal structure search and first-principles calculations, we report a series of two-dimensional (2D) metal borides including orthorhombic (ort-) MB6 (M=Mg, Ca) and hexagonal (hex-) MB6 (M=Mg, Ca, Sc, Ti, Sr, Y). Then, we investigate their geometrical structures, bonding properties, electronic structures, mechanical properties, phonon dispersions, thermal stability, dynamic stability, electron-phonon coupling (EPC), superconducting properties and so on. Our ab init...
February 24, 2024
First-principles calculations have been used to investigate the electronic and topological properties of the two-dimensional C6-2x(BN)x biphenylene network, a graphene-like structure composed of not only hexagonal ring but also octagonal and square rings. Nontrivial topological properties have been found in two of them, with a stoichiometry of C4BN and C2(BN)2. The former C4BN is predicted to be a type-II Dirac semimetal with a superconducting critical temperature Tc=0.38K, w...
May 1, 2014
We predict by first-principles calculations that the electron-doped phosphorene is a potential BCS-like superconductor. The stretching modes at the Brillouin-zone center are remarkably softened by the electron-doping, which results in the strong electron-phonon coupling. The superconductivity can be introduced by a doped electron density ($n_{2D}$) above $1.3 \times10^{14}$ cm$^{-2}$, and may exist over the liquid helium temperature when $n_{2D}>2.6 \times10^{14}$ cm$^{-2}$. ...
December 13, 2017
Recently synthesized two-dimensional (2D) boron, borophene, exhibits a novel metallic behavior rooted in the s-p orbital hybridization, distinctively different from other 2D materials such as sulfides/selenides and semi-metallic graphene. This unique feature of borophene implies new routes for charge delocalization and band gap opening. Herein, using first-principles calculations, we explore the routes to localize the carriers and open the band gap of borophene via chemical f...
April 2, 2021
Among the large variety of two-dimensional (2D) materials discovered to date, elemental monolayers that host superconductivity are very rare. Using ab initio calculations we show that recently synthesized gallium monolayers, coined gallenene, are intrinsically superconducting through electron-phonon coupling. We reveal that Ga-100 gallenene, a planar monolayer isostructural with graphene, is the structurally simplest 2D superconductor to date, furthermore hosting topological ...
April 3, 2017
Superconductivity is a fascinating quantum phenomenon characterized by zero electrical resistance and the Meissner effect. To date, several distinct families of superconductors (SCs) have been discovered. These include three-dimensional (3D) bulk SCs in both inorganic and organic materials as well as two-dimensional (2D) thin film SCs but only in $inorganic$ materials. Here we predict superconductivity in 2D and 3D $organic$ metal-organic frameworks by using first-principles ...
November 30, 2017
Two-dimensional boron sheets (borophenes) have been successfully synthesized in experiments and are expected to exhibit intriguing transport properties such as the emergence of superconductivity and Dirac Fermions. However, quantitative understanding of intrinsic electrical transport of borophene has not been achieved. Here, we report a comprehensive first-principles study on electron-phonon driven intrinsic electrical resistivity (\r{ho}) of emerging borophene structures. We...
April 21, 2024
Two-dimensional metals, such as graphene, have undergone extensive exploration, with graphene exhibiting a metallic response limited to the infrared spectral range. Overcoming the challenge of extending the electron mobility in two-dimensional metals to achieve plasmonic behaviors in the visible range necessitates innovative synthesis procedures. In this study, we showcase the successful realization of the phase of \c{hi}_3 borophene on diverse substrates using aluminum-based...