December 31, 2019
Similar papers 3
September 15, 2009
We demonstrate a practical and efficient method for generating toric Calabi-Yau quiver theories, applicable to both D3 and M2 brane world-volume physics. A new analytic method is presented at low order parametres and an algorithm for the general case is developed which has polynomial complexity in the number of edges in the quiver. Using this algorithm, carefully implemented, we classify the quiver diagram and assign possible superpotentials for various small values of the nu...
June 11, 2015
We initiate a systematic study of 2d (0,2) quiver gauge theories on the worldvolume of D1-branes probing singular toric Calabi-Yau 4-folds. We present an algorithm for efficiently calculating the classical mesonic moduli spaces of these theories, which correspond to the probed geometries. We also introduce a systematic procedure for constructing the gauge theories for arbitrary toric singularities by means of partial resolution, which translates to higgsing in the field theor...
June 27, 2022
We study the Gauge/Bethe correspondence for two-dimensional $\mathcal{N}=(2,2)$ supersymmetric quiver gauge theories associated with toric Calabi-Yau three-folds, whose BPS algebras have recently been identified as the quiver Yangians. We start with the crystal representations of the quiver Yangian, which are placed at each site of the spin chain. We then construct integrable models by combining the single-site crystals into crystal chains by a coproduct of the algebra, which...
August 7, 2006
We develop a systematic and efficient method of counting single-trace and multi-trace BPS operators with two supercharges, for world-volume gauge theories of $N$ D-brane probes for both $N \to \infty$ and finite $N$. The techniques are applicable to generic singularities, orbifold, toric, non-toric, complete intersections, et cetera, even to geometries whose precise field theory duals are not yet known. The so-called ``Plethystic Exponential'' provides a simple bridge between...
May 27, 2020
We introduce and explore the relation between quivers and 3-manifolds with the topology of the knot complement. This idea can be viewed as an adaptation of the knots-quivers correspondence to Gukov-Manolescu invariants of knot complements (also known as $F_K$ or $\hat{Z}$). Apart from assigning quivers to complements of $T^{(2,2p+1)}$ torus knots, we study the physical interpretation in terms of the BPS spectrum and general structure of 3d $\mathcal{N}=2$ theories associated ...
December 14, 2012
We present a survey of the computation of the BPS spectrum of a general four-dimensional N=2 supersymmetric gauge theory in terms of the Representation Theory of quivers with superpotential. We focus on SYM with a general gauge group G coupled to standard matter in arbitrary representations of G (consistent with a non--positive beta--function). The situation is particularly tricky and interesting when the matter consists of an odd number of half-hypermultiplets: we describe i...
February 25, 2011
We study the matrix models that result from localization of the partition functions of N=2 Chern-Simons-matter theories on the three-sphere. A large class of such theories are conjectured to be holographically dual to M-theory on Sasaki-Einstein seven-manifolds. We study the M-theory limit (large N and fixed Chern-Simons levels) of these matrix models for various examples, and show that in this limit the free energy reproduces the expected AdS/CFT result of N^{3/2}/Vol(Y)^{1/...
April 26, 2012
We investigate infinite families of 3d N=2 superconformal Chern-Simons quivers with an arbitrarily large number of gauge groups arising on M2-branes over toric CY_4's. These theories have the same matter content and superpotential of those on D3-branes probing cones over L^{a,b,a} Sasaki-Einstein manifolds. For all these infinite families, we explicitly show the correspondence between the free energy F on S^3 and the volume of the 7-dimensional base of the associated CY_4, ev...
November 18, 2016
We study the geometric description of BPS states in supersymmetric theories with eight supercharges in terms of geodesic networks on suitable spectral curves. We lift and extend several constructions of Gaiotto-Moore-Neitzke from gauge theory to local Calabi-Yau threefolds and related models. The differential is multi-valued on the covering curve and features a new type of logarithmic singularity in order to account for D0-branes and non-compact D4-branes, respectively. We de...
February 25, 2022
We study the refined and unrefined crystal/BPS partition functions of D6-D2-D0 brane bound states for all toric Calabi-Yau threefolds without compact 4-cycles and some non-toric examples. They can be written as products of (generalized) MacMahon functions. We check our expressions and use them as vacuum characters to study the gluings. We then consider the wall crossings and discuss possible crystal descriptions for different chambers. We also express the partition functions ...