May 12, 2016
The paradigm of extracting work from isolated quantum system through a cyclic Hamiltonian process is a topic of immense research interest. The optimal work extracted under such process is termed as ergotropy [Europhys. Lett., 67 (4), 565(2004)]. Here, in a multi-party scenario we consider only a class of such cyclic processes that can be implemented locally, giving rise to the concept of local ergotropy. Eventually, presence of quantum correlations result in a non-vanishing t...
September 23, 2020
We characterize the impact that the application of two maps in a quantum-controlled order has on the process of work extraction via unitary cycles and its optimization. The control is based on the quantum switch model that applies maps in an order not necessarily compatible with the underlying causal structure and, in principle, can be implemented experimentally. First, we show that the activation of quantum maps through the quantum switch model always entails a non-negative ...
January 30, 2018
One of the principal objectives of quantum thermodynamics is to explore quantum effects and their potential beneficial role in thermodynamic tasks like work extraction or refrigeration. So far, even though several papers have already shown that quantum effect could indeed bring quantum advantages, a global and deeper understanding is still lacking. Here, we extend previous models of autonomous machines to include quantum batteries made of arbitrary systems of discrete spectru...
June 21, 2019
We show that finite system-reservoir coupling imposes a distinct quantum limit on the performance of a non-equilibrium quantum heat engine. Even in the absence of quantum friction along the isentropic strokes, finite system-reservoir coupling induces correlations that result in the generation of coherence between the energy eigenstates of the working system. This coherence acts to hamper the engine's power output, as well as the efficiency with which it can convert heat into ...
December 3, 2020
At the heart of quantum thermodynamics lies a fundamental question about what is genuine "quantum" in quantum heat engines and how to seek this quantumness, so that thermodynamical tasks could be performed more efficiently compared with classical protocols. Here, using the concept of $P$-representability, we define a function called classicality, which quantifies the degree of non-classicality of bosonic modes. This function allows us to explore the role of non-classicality i...
May 17, 2019
An important result in classical stochastic thermodynamics is the work fluctuation--dissipation relation (FDR), which states that the dissipated work done along a slow process is proportional to the resulting work fluctuations. Here we show that slowly driven quantum systems violate this FDR whenever quantum coherence is generated along the protocol, and derive a quantum generalisation of the work FDR. The additional quantum terms in the FDR are found to lead to a non-Gaussia...
March 11, 2015
The Carnot statement of the second law of thermodynamics poses an upper limit on the efficiency of all heat engines. Recently, it has been studied whether generic quantum features such as coherence and quantum entanglement could allow for quantum devices with efficiencies larger than the Carnot efficiency. The present study shows that this is not permitted by the laws of thermodynamics. In particular, we will show that rather the definition of heat has to be modified to accou...
May 13, 2022
The second law of thermodynamics uses change in free energy of macroscopic systems to set a bound on performed work. Ergotropy plays a similar role in microscopic scenarios, and is defined as the maximum amount of energy that can be extracted from a system by a unitary operation. In this analysis, we quantify how much ergotropy can be induced on a system as a result of system's interaction with a thermal bath, with a perspective of using it as a source of work performed by mi...
March 10, 2019
The unitary generation of coherence from an incoherent thermal state is investigated. We consider a completely controllable Hamiltonian allowing to generate all possible unitary transformations. Optimizing the unitary control to achieve maximum coherence leads to a micro-canonical energy distribution on the diagonal energy representation. We demonstrate such a control scenario starting from a Hamiltonian utilizing optimal control theory for unitary targets. Generating coheren...
May 25, 2018
One of the most important goals in quantum thermodynamics is to demonstrate advantages of thermodynamic protocols over their classical counterparts. For that, it is necessary to (i) develop theoretical tools and experimental set-ups to deal with quantum coherence in thermodynamic contexts, and to (ii) elucidate which properties are genuinely quantum in a thermodynamic process. In this short review, we discuss proposals to define and measure work fluctuations that allow to cap...