June 12, 2020
Usually, a left-moving fermion in d=1+1 dimensions reflects off a boundary to become a right-moving fermion. This means that, while overall fermion parity $(-1)^F$ is conserved, chiral fermion parity for left- and right-movers individually is not. Remarkably, there are boundary conditions that do preserve chiral fermion parity, but only when the number of Majorana fermions is a multiple of 8. In this paper we classify all such boundary states for $2N$ Majorana fermions when a $U(1)^N$ symmetry is also preserved. The fact that chiral-parity-preserving boundary conditions only exist when $2N$ is divisible by 8 translates to an interesting property of charge lattices. We also classify the enhanced continuous symmetry preserved by such boundary states. The state with the maximum such symmetry is the $SO(8)$ boundary state, first constructed by Maldacena and Ludwig to describe the scattering of fermions off a monopole
Similar papers 1
June 19, 2023
It is known that the $2+1$d single Majorana fermion theory has an anomaly of the reflection, which is canceled out when 16 copies of the theory are combined. Therefore, it is expected that the reflection symmetric boundary condition is impossible for one Majorana fermion, but possible for 16 Majorana fermions. In this paper, we consider a reflection symmetric boundary condition that varies at a single point, and find that there is a problem with one Majorana fermion. The prob...
December 3, 2019
We study boundary states for Dirac fermions in d=1+1 dimensions that preserve Abelian chiral symmetries, meaning that the left- and right-moving fermions carry different charges. We derive simple expressions, in terms of the fermion charge assignments, for the boundary central charge and for the ground state degeneracy of the system when two different boundary conditions are imposed at either end of an interval. We show that all such boundary states fall into one of two class...
May 22, 2020
Boundary conditions for Majorana fermions in d=1+1 dimensions fall into one of two SPT phases, associated to a mod 2 anomaly. Here we consider boundary conditions for 2N Majorana fermions that preserve a $U(1)^N$ symmetry. In general, the left-moving and right-moving fermions carry different charges under this symmetry, and implementation of the boundary condition requires new degrees of freedom, which manifest themselves in a boundary central charge, $g$. We follow the bou...
June 17, 2019
Eight Majorana fermions in $d=1+1$ dimensions enjoy a triality that permutes the representation of the $SO(8)$ global symmetry in which the fermions transform. This triality plays an important role in the quantization of the superstring, and in the analysis of interacting topological insulators and the associated phenomenon of symmetric mass generation. The purpose of these notes is to provide an introduction to the triality and its applications, with careful attention paid t...
December 3, 2023
I show how chiral fermions with an exact gauge symmetry in any representation can appear on the d-dimensional boundary of a finite volume (d + 1)-dimensional manifold, without any light mirror partners. The condition for it to look like a local d-dimensional theory is that gauge anomalies cancel, and that the volume be large. This provides a new paradigm for the lattice regularization of chiral gauge theories.
August 12, 2022
Boundary conditions for a massless Dirac fermion in 2+1 dimensions where the space is a half-plane are discussed in detail. It is argued that linear boundary conditions that leave the Hamiltonian Hermitian generically break $C$ $P$ and $T$ symmetries as well as Lorentz and conformal symmetry. We show that there is essentially one special case where a single species of fermion has $CPT$ and the full Poincare and conformal symmetry of the boundary. We show that, with doubled fe...
November 8, 2024
We investigate (3+1)d topological orders in fermionic systems with an anomalous $\mathbb{Z}_{2N}^{\mathrm{F}}$ symmetry, where its $\mathbb{Z}_2^{\mathrm{F}}$ subgroup is the fermion parity. Such an anomalous symmetry arises as the discrete subgroup of the chiral U(1) symmetry of $\nu$ copies of Weyl fermions of the same chirality. Guided by the crystalline correspondence principle, we construct (3+1)d symmetry-preserving gapped states on the boundary of a closely related (4+...
September 18, 2020
A quasi-1D superconductor with odd number of Fermi surfaces is expected to exhibit a nondegenerate Majorana bound state at the Fermi level at its boundary with an insulator (where the latter could be an actual insulator material or vacuum, for a terminated sample). Previous explicit theoretical demonstrations of this property were done for specific microscopic models of the bulk Hamiltonian and, most importantly, of the boundary. In this work, we theoretically demonstrate tha...
December 28, 2023
Charge conjugation (C), mirror reflection (R), time reversal (T), and fermion parity $(-1)^{\rm F}$ are basic discrete spacetime and internal symmetries of the Dirac fermions. In this article, we determine the group, called the C-R-T fractionalization, which is a group extension of $\mathbb{Z}_2^{\rm C}\times\mathbb{Z}_2^{\rm R}\times\mathbb{Z}_2^{\rm T}$ by the fermion parity $\mathbb{Z}_2^{\rm F}$, and its extension class in all spacetime dimensions $d$, for a single-partic...
January 4, 2015
When spatial boundaries are inserted, SUSY can be broken. We show that in an $\mathcal{N}=2$ supersymmetric theory, all the boundary conditions allowed by self-adjointness of the Hamiltonian break $\mathcal{N}=2$ SUSY while only a few of these boundary conditions preserve $\mathcal{N}=1$ SUSY. We also show that for a subset of the boundary conditions compatible with $\mathcal{N}=1$ SUSY, there exist fermionic ground states which are localized near the boundary.