ID: 2006.16996

Anomaly and Cobordism Constraints Beyond the Standard Model: Topological Force

June 30, 2020

View on ArXiv
Juven Wang
High Energy Physics - Theory
Condensed Matter
High Energy Physics - Phenom...
Mathematics
Superconductivity
Mathematical Physics

Standard lore uses local anomalies to check the kinematic consistency of gauge theories coupled to chiral fermions, e.g. Standard Models (SM). Based on a systematic cobordism classification, we examine constraints from invertible quantum anomalies (including all perturbative local and nonperturbative global anomalies) for gauge theories. We also clarify the different uses of these anomalies: including (1) anomaly cancellations of dynamical gauge fields, (2) 't Hooft anomaly matching conditions of background fields of global symmetries, and others. We apply several 4d $\mathbb{Z}_{n}$ anomaly constraints of $n=16,4,2$ classes, beyond the familiar Feynman-graph perturbative $\mathbb{Z}$ class local anomalies. As an application, for (SU(3)$\times$SU(2)$\times$U(1))/$\mathbb{Z}_q$ SM (with $q=1,2,3,6$) and SU(5) Grand Unification with 15n chiral Weyl fermions and with a discrete baryon minus lepton number $X=5({\bf B}- {\bf L})-4Y$ preserved, we discover a new hidden gapped sector previously unknown to the SM and Georgi-Glashow model. The gapped sector at low energy contains either (1) 4d non-invertible topological quantum field theory (TQFT, above the energy gap with heavy fractionalized anyon excitations from 1d particle worldline and 2d string worldsheet, inaccessible directly from Dirac or Majorana mass gap of the 16th Weyl fermions [i.e., right-handed neutrinos], but accessible via a topological quantum phase transition), or (2) 5d invertible TQFT in extra dimensions. Above a higher energy scale, the discrete $X$ becomes dynamically gauged, the entangled Universe in 4d and 5d is mediated by Topological Force. Our model potentially resolves puzzles, surmounting sterile neutrinos and dark matter, in fundamental physics.

Similar papers 1