July 20, 2020
Similar papers 3
August 22, 2003
The Wigner function W(q,p) is formulated as a phase-space path integral, whereby its sign oscillations can be seen to follow from interference between the geometrical phases of the paths. The approach has similarities to the path-centroid method in the configuration-space path integral. Paths can be classified by the mid-point of their ends; short paths where the mid-point is close to (q,p) and which lie in regions of low energy (low P function of the Hamiltonian) will domina...
March 1, 2016
A branching random walk algorithm for the many-body Wigner equation and its numerical applications for quantum dynamics in phase space are proposed and analyzed. After introducing an auxiliary function, the (truncated) Wigner equation is cast into the integral formulation as well as its adjoint correspondence, both of which can be reformulated into the renewal-type equations and have transparent probabilistic interpretation. We prove that the first moment of a branching rando...
November 18, 2013
We have a look at the probability measures induced by Schrodinger wave functions on phase space.
April 28, 2020
We use a noncommutative generalization of Fourier analysis to define a broad class of pseudo-probability representations, which includes the known bosonic and discrete Wigner functions. We characterize the groups of quantum unitary operations which correspond to phase-space transformations, generalizing Gaussian and Clifford operations. As examples, we find Wigner representations for fermions, hard-core bosons, and angle-number systems.
July 11, 2005
We discuss questions pertaining to the definition of `momentum', `momentum space', `phase space', and `Wigner distributions'; for finite dimensional quantum systems. For such systems, where traditional concepts of `momenta' established for continuum situations offer little help, we propose a physically reasonable and mathematically tangible definition and use it for the purpose of setting up Wigner distributions in a purely algebraic manner. It is found that the point of view...
March 5, 2008
In this survey, our aim is to emphasize the main known limitations to the use of Wigner measures for Schrodinger equations. After a short review of successful applications of Wigner measures to study the semi-classical limit of solutions to Schrodinger equations, we list some examples where Wigner measures cannot be a good tool to describe high frequency limits. Typically, the Wigner measures may not capture effects which are not negligible at the pointwise level, or the prop...
October 21, 2010
The quantum evolution of the Wigner function for Gaussian wave packets generated by a non-Hermitian Hamiltonian is investigated. In the semiclassical limit $\hbar\to 0$ this yields the non-Hermitian analog of the Ehrenfest theorem for the dynamics of observable expectation values. The lack of Hermiticity reveals the importance of the complex structure on the classical phase space: The resulting equations of motion are coupled to an equation of motion for the phase space metri...
August 18, 2022
Informal collection of lecture notes introducing quantum mechanics in phase space and basic Gaussian quantum mechanics.
May 21, 2002
Quantum theory predicts probabilities as well as relative phases between different alternatives of the system. A unified description of both probabilities and phases comes through a generalisation of the notion of a density matrix for histories; this object is the decoherence functional of the consistent histories approach. If we take phases as well as probabilities as primitive elements of our theory, we abandon Kolmogorov probability and can describe quantum theory in terms...
November 21, 2016
We consider quantum phase-space dynamics using Wigner's representation of quantum mechanics. We stress the usefulness of the integral form for the description of Wigner's phase-space current~$\bm J$ as an alternative to the popular Moyal bracket. The integral form brings out the symmetries between momentum and position representations of quantum mechanics, is numerically stable, and allows us to perform some calculations using elementary integrals instead of Groenewold star p...