July 20, 2020
Similar papers 4
August 13, 2002
We argue that the complex numbers are an irreducible object of quantum probability. This can be seen in the measurements of geometric phases that have no classical probabilistic analogue. Having complex phases as primitive ingredient implies that we need to accept non-additive probabilities. This has the desirable consequence of removing constraints of standard theorems about the possibility of describing quantum theory with commutative variables. Motivated by the formalism o...
June 29, 2015
We introduce a new density for the representation of quantum states on phase space. It is constructed as a weighted difference of two smooth probability densities using the Husimi function and first-order Hermite spectrograms. In contrast to the Wigner function, it is accessible by sampling strategies for positive densities. In the semiclassical regime, the new density allows to approximate expectation values to second order with respect to the high frequency parameter and is...
November 18, 2002
The phase space dynamics of dissipative quantum systems in strongly condensed phase is considered. Based on the exact path integral approach it is shown that the Wigner transform of the reduced density matrix obeys a time evolution equation of Fokker-Planck type valid from high down to very low temperatures. The effect of quantum fluctuations is discussed and the accuracy of these findings is tested against exact data for a harmonic system.
January 27, 2005
We discuss a family of quasi-distributions (s-ordered Wigner functions of Agarwal and Wolf) and its connection to the so called phase space representation of the Schroedinger equation. It turns out that although Wigner functions satisfy the Schroedinger equation in phase space they have completely different interpretation.
February 21, 2024
For any state in a $D$-dimensional Hilbert space with a choice of basis, one can define a discrete version of the Wigner function -- a quasi-probability distribution which represents the state on a discrete phase space. The Wigner function can, in general, take on negative values, and the amount of negativity in the Wigner function has an operational meaning as a resource for quantum computation. In this note, we study the growth of Wigner negativity for a generic initial sta...
April 16, 2008
We give a definition for the Wigner function for quantum mechanics on the Bohr compactification of the real line and prove a number of simple consequences of this definition. We then discuss how this formalism can be applied to loop quantum cosmology. As an example, we use the Wigner function to give a new quantization of an important building block of the Hamiltonian constraint.
February 22, 2021
The phase-space formulation of quantum mechanics has recently seen increased use in testing quantum technologies, including metho ds of tomography for state verification and device validation. Here, an overview of quantum mechanics in phase space is presented. The formulation to generate a generalized phase-space function for any arbitrary quantum system is shown, such as the Wigner and Weyl functions along with the asso ciated Q and P functions. Examples of how these differe...
August 12, 2017
Since the very early days of quantum theory there have been numerous attempts to interpret quantum mechanics as a statistical theory. This is equivalent to describing quantum states and ensembles together with their dynamics entirely in terms of phase-space distributions. Finite dimensional systems have historically been an issue. In recent works [Phys. Rev. Lett. 117, 180401 and Phys. Rev. A 96, 022117] we presented a framework for representing any quantum state as a complet...
October 5, 2019
The Wigner-Weyl transform and phase space formulation of a density matrix approach are applied to a non-Hermitian model which is quadratic in positions and momenta. We show that in the presence of a quantum environment or reservoir, mean lifetime and decay constants of quantum systems do not necessarily take arbitrary values, but could become functions of energy eigenvalues and have a discrete spectrum. It is demonstrated also that a constraint upon mean lifetime and energy a...
August 9, 2021
We show that the Truncated Wigner Approximation developed in the flat phase-space is mapped into a Lindblad-type evolution with an indefinite metric in the space of linear operators. As a result, the classically evolved Wigner function corresponds to a non-positive operator $\hat{R}(t)$, which does not describe a physical state. The rate of appearance of negative eigenvalues of $\hat{R}(t)$ can be efficiently estimated. The short-time dynamics of the Kerr and second harmonic ...